首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25056篇
  免费   2270篇
  国内免费   9篇
  2024年   27篇
  2023年   111篇
  2022年   112篇
  2021年   606篇
  2020年   372篇
  2019年   435篇
  2018年   497篇
  2017年   465篇
  2016年   764篇
  2015年   1246篇
  2014年   1409篇
  2013年   1606篇
  2012年   2132篇
  2011年   2165篇
  2010年   1385篇
  2009年   1130篇
  2008年   1709篇
  2007年   1602篇
  2006年   1443篇
  2005年   1434篇
  2004年   1436篇
  2003年   1235篇
  2002年   1079篇
  2001年   224篇
  2000年   155篇
  1999年   208篇
  1998年   243篇
  1997年   162篇
  1996年   162篇
  1995年   130篇
  1994年   152篇
  1993年   127篇
  1992年   122篇
  1991年   88篇
  1990年   69篇
  1989年   66篇
  1988年   77篇
  1987年   73篇
  1986年   56篇
  1985年   63篇
  1984年   78篇
  1983年   87篇
  1982年   75篇
  1981年   64篇
  1980年   64篇
  1979年   42篇
  1978年   51篇
  1977年   36篇
  1976年   43篇
  1974年   30篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Hou Y  Hsu W  Lee ML  Bystroff C 《Proteins》2004,57(3):518-530
Remote homology detection refers to the detection of structural homology in proteins when there is little or no sequence similarity. In this article, we present a remote homolog detection method called SVM-HMMSTR that overcomes the reliance on detectable sequence similarity by transforming the sequences into strings of hidden Markov states that represent local folding motif patterns. These state strings are transformed into fixed-dimension feature vectors for input to a support vector machine. Two sets of features are defined: an order-independent feature set that captures the amino acid and local structure composition; and an order-dependent feature set that captures the sequential ordering of the local structures. Tests using the Structural Classification of Proteins (SCOP) 1.53 data set show that the SVM-HMMSTR gives a significant improvement over several current methods.  相似文献   
992.
Friedreich ataxia (FRDA) is primarily caused by an unstable GAA repeat-expansion mutation within intron 1 of the FRDA gene. However, the exact mechanisms leading to this expansion and its consequences are not fully understood. To study the dynamics of this mutation, we have generated two lines of human FRDA YAC transgenic mice that contain GAA repeat expansions within the appropriate genomic context. We have detected intergenerational instability and age-related somatic instability in both lines, with pronounced expansions found in the cerebellum. The dynamic nature of our transgenic GAA repeats is comparable with previous FRDA patient somatic tissue data. However, there is a difference between our FRDA YAC transgenic mice and other trinucleotide-repeat mouse models, which do not show pronounced repeat instability in the cerebellum. This represents the first mouse model of FRDA GAA repeat instability that will help to dissect the mechanism of this repeat.  相似文献   
993.
Glutathione (GSH) is important in free radical scavenging, maintaining cellular redox status, and regulating cell survival in response to a wide variety of toxicants. The rate-limiting enzyme in GSH synthesis is glutamate-cysteine ligase (GCL), which is composed of catalytic (GCLC) and modifier (GCLM) subunits. To determine whether increased GSH biosynthetic capacity enhances cellular resistance to tumor necrosis factor-alpha- (TNF-alpha-) induced apoptotic cell death, we have established several mouse liver hepatoma (Hepa-1) cell lines overexpressing GCLC and/or GCLM. Cells overexpressing GCLC alone exhibit modest increases in GCL activity, while cells overexpressing both subunits have large increases in GCL activity. Importantly, cells overexpressing both GCL subunits exhibit increased resistance to TNF-induced apoptosis as judged by a loss of redox potential; mitochondrial membrane potential; translocation of cytochrome c to the cytoplasm; and activation of caspase-3, caspase-8, and caspase-9. Analysis of the effects of TNF on these parameters indicates that maintaining mitochondrial integrity mediates this protective effect in GCL-overexpressing cells.  相似文献   
994.
In this review, we describe the free radical mechanism of covalent aggregation of human copper, zinc superoxide dismutase (hSOD1). Bicarbonate anion (HCO3-) enhances the covalent aggregation of hSOD1 mediated by the SOD1 peroxidase-dependent formation of carbonate radical anion (CO3*-), a potent and selective oxidant. This species presumably diffuses out the active site of hSOD1 and reacts with tryptophan residue located on the surface of hSOD1. The oxidative degradation of tryptophan to kynurenine and N-formyl kynurenine results in the covalent crosslinking and aggregation of hSOD1. Implications of oxidant-mediated aggregation of hSOD1 in the increased cytotoxicity of motor neurons in amyotrophic lateral sclerosis are discussed.  相似文献   
995.
LIM homeobox genes have a prominent role in the regulation of neuronal subtype identity and distinguish motor neuron subclasses in the embryonic spinal cord. We have investigated the role of Isl-class LIM homeodomain proteins in motor neuron diversification using mouse genetic methods. All spinal motor neuron subtypes initially express both Isl1 and Isl2, but Isl2 is rapidly downregulated by visceral motor neurons. Mouse embryos lacking Isl2 function exhibit defects in the migration and axonal projections of thoracic level motor neurons that appear to reflect a cell-autonomous switch from visceral to somatic motor neuron character. Additional genetic mutations that reduce or eliminate both Isl1 and Isl2 activity result in more pronounced defects in visceral motor neuron generation and erode somatic motor neuron character. Thus, an early phase of high Isl expression and activity in newly generated motor neurons permits the diversification of visceral and somatic motor neuron subtypes in the developing spinal cord.  相似文献   
996.
Access to a key 3-aryl-delta-lactone intermediate in enantiopure form using preparative chiral chromatography allowed expedited preparation of an important drug discovery target. A preclinical drug discovery strategy that combines rapid route discovery with effective use of preparative chiral chromatography can result in significant savings of both time and labor.  相似文献   
997.
998.
The recent discovery of significant associations between bovine spongiform encephalopathy (BSE) susceptibility in German cattle and the frequency distributions of insertion/deletion (indel) polymorphisms within the bovine PRNP gene prompted an evaluation of 132 commercial U.S. artificial insemination (AI) sires from 39 breeds. Forward primer sequences from published primer sets targeting indels within the putative bovine PRNP promoter, intron 1, and the 3 UTR (untranslated region) were synthesized with unique 5 fluorescent labels and utilized to develop a rapid multiplexed PCR assay for identifying BSE-associated indels as well as facilitating polymorphism analyses and/or marker-assisted selection. Significant differences (p < 0.05 all tests) were detected between the frequencies of bovine PRNP promoter alleles for 48 healthy German cattle previously described and 132 commercial U.S. cattle sires. The frequency of the 23-bp promoter allele observed for commercial U.S. cattle sires strongly resembled that recently described for 43 BSE-affected German cattle. No significant difference (p=0.051) was detected between the distributions of promoter genotypes for healthy German cattle and our panel of commercial U.S. cattle sires. Interestingly, significant differences (p < 0.01; p < 0.02) were also noted between the frequencies and distributions of intron 1 alleles and genotypes, respectively, for BSE-affected German cattle and our panel of U.S. cattle sires. No significant allelic or genotypic differences were detected for the 14-bp 3 UTR indel for any given comparison between German cattle and commercial U.S. cattle sires.  相似文献   
999.
1000.
The first barrier to infection encountered by foliar pathogens is the host cuticle. To traverse this obstacle, many fungi produce specialized infection cells called appressoria. MST12 is essential for appressorium-mediated penetration and infectious growth by the rice pathogen Magnaporthe grisea. In this study, we have characterized in detail the penetration defects of an mst12 deletion mutant. Appressoria formed by the mst12 mutant developed normal turgor pressure and ultrastructure but failed to form penetration pegs either on cellophane membranes or on plant epidermal cells. Deletion and site-directed mutagenesis analyses indicated that both the homeodomain and zinc finger domains, but not the middle region, of MST12 are essential for appressorial penetration and plant infection. The mst12 mutant appeared to be defective in microtubule reorganization associated with penetration peg formation. In mature appressoria, the mutant lacked vertical microtubules observed in the wild type. The mst12 mutant also failed to elicit localized host defence responses, including papilla formation and autofluorescence. Our data indicate that generation of appressorium turgor pressure and formation of the penetration peg are two independent processes. MST12 may play important roles in regulating penetration peg formation and directing the physical forces exerted by the appressorium turgor in mature appressoria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号