首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5709篇
  免费   542篇
  国内免费   3篇
  2023年   21篇
  2022年   24篇
  2021年   113篇
  2020年   77篇
  2019年   101篇
  2018年   122篇
  2017年   100篇
  2016年   154篇
  2015年   273篇
  2014年   338篇
  2013年   389篇
  2012年   499篇
  2011年   443篇
  2010年   317篇
  2009年   316篇
  2008年   389篇
  2007年   391篇
  2006年   328篇
  2005年   312篇
  2004年   310篇
  2003年   323篇
  2002年   260篇
  2001年   53篇
  2000年   44篇
  1999年   57篇
  1998年   58篇
  1997年   46篇
  1996年   25篇
  1995年   28篇
  1994年   16篇
  1993年   24篇
  1992年   27篇
  1991年   23篇
  1990年   20篇
  1989年   16篇
  1988年   14篇
  1987年   11篇
  1986年   9篇
  1985年   11篇
  1984年   19篇
  1983年   18篇
  1982年   8篇
  1981年   11篇
  1979年   11篇
  1977年   9篇
  1976年   13篇
  1975年   9篇
  1973年   7篇
  1971年   11篇
  1964年   6篇
排序方式: 共有6254条查询结果,搜索用时 31 毫秒
941.
Phospholipase A2 (PLA2) activity has been shown to be involved in the sperm acrosome reaction (AR), but the molecular identity of PLA2 isoforms has remained elusive. Here, we have tested the role of two intracellular (iPLA2β and cytosolic PLA2α) and one secreted (group X) PLA2s in spontaneous and progesterone (P4)-induced AR by using a set of specific inhibitors and knock-out mice. iPLA2β is critical for spontaneous AR, whereas both iPLA2β and group X secreted PLA2 are involved in P4-induced AR. Cytosolic PLA2α is dispensable in both types of AR. P4-induced AR spreads over 30 min in the mouse, and kinetic analyses suggest the presence of different sperm subpopulations, using distinct PLA2 pathways to achieve AR. At low P4 concentration (2 μm), sperm undergoing early AR (0–5 min post-P4) rely on iPLA2β, whereas sperm undergoing late AR (20–30 min post-P4) rely on group X secreted PLA2. Moreover, the role of PLA2s in AR depends on P4 concentration, with the PLA2s being key actors at low physiological P4 concentrations (≤2 μm) but not at higher P4 concentrations (∼10 μm).  相似文献   
942.
Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe229 and Phe279 of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe279. Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe279. In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe279, whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe229.  相似文献   
943.
PB1-F2 is a small accessory protein encoded by an alternative open reading frame in PB1 segments of most influenza A virus. PB1-F2 is involved in virulence by inducing mitochondria-mediated immune cells apoptosis, increasing inflammation, and enhancing predisposition to secondary bacterial infections. Using biophysical approaches we characterized membrane disruptive activity of the full-length PB1-F2 (90 amino acids), its N-terminal domain (52 amino acids), expressed by currently circulating H1N1 viruses, and its C-terminal domain (38 amino acids). Both full-length and N-terminal domain of PB1-F2 are soluble at pH values ≤6, whereas the C-terminal fragment was found soluble only at pH ≤ 3. All three peptides are intrinsically disordered. At pH ≥ 7, the C-terminal part of PB1-F2 spontaneously switches to amyloid oligomers, whereas full-length and the N-terminal domain of PB1-F2 aggregate to amorphous structures. When incubated with anionic liposomes at pH 5, full-length and the C-terminal part of PB1-F2 assemble into amyloid structures and disrupt membrane at nanomolar concentrations. PB1-F2 and its C-terminal exhibit no significant antimicrobial activity. When added in the culture medium of mammalian cells, PB1-F2 amorphous aggregates show no cytotoxicity, whereas PB1-F2 pre-assembled into amyloid oligomers or fragmented nanoscaled fibrils was highly cytotoxic. Furthermore, the formation of PB1-F2 amyloid oligomers in infected cells was directly reflected by membrane disruption and cell death as observed in U937 and A549 cells. Altogether our results demonstrate that membrane-lytic activity of PB1-F2 is closely linked to supramolecular organization of the protein.  相似文献   
944.
945.
Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions.  相似文献   
946.
Experimental characterization of the structural couplings in free B-DNA in solution has been elusive, because of subtle effects that are challenging to tackle. Here, the exploitation of the NMR measurements collected on four dodecamers containing a substantial set of dinucleotide sequences provides new, consistent correlations revealing the DNA intrinsic mechanics. The difference between two successive residual dipolar couplings (ΔRDCs) involving C6/8-H6/8, C3′-H3′ and C4′-H4′ vectors are correlated to the 31P chemical shifts (δP), which reflect the populations of the BI and BII backbone states. The δPs are also correlated to the internucleotide distances (Dinter) involving H6/8, H2′ and H2″ protons. Calculations of NMR quantities on high resolution X-ray structures and controlled models of DNA enable to interpret these couplings: the studied ΔRDCs depend mostly on roll, while Dinter are mainly sensitive to twist or slide. Overall, these relations demonstrate how δP measurements inform on key inter base parameters, in addition to probe the BI↔BII backbone equilibrium, and shed new light into coordinated motions of phosphate groups and bases in free B-DNA in solution. Inspection of the 5′ and 3′ ends of the dodecamers also supplies new information on the fraying events, otherwise neglected.  相似文献   
947.
The (R)-specific 3-hydroxyacyl dehydratases/trans-enoyl hydratases are key proteins in the biosynthesis of fatty acids. In mycobacteria, such enzymes remain unknown, although they are involved in the biosynthesis of major and essential lipids like mycolic acids. First bioinformatic analyses allowed to identify a single candidate protein, namely Rv3389c, that belongs to the hydratases 2 family and is most likely made of a distinctive asymmetric double hot dog fold. The purified recombinant Rv3389c protein was shown to efficiently catalyze the hydration of (C(8)-C(16)) enoyl-CoA substrates. Furthermore, it catalyzed the dehydration of a 3-hydroxyacyl-CoA in coupled reactions with both reductases (MabA and InhA) of the acyl carrier protein (ACP)-dependent M. tuberculosis fatty acid synthase type II involved in mycolic acid biosynthesis. Yet, the facts that Rv3389c activity decreased in the presence of ACP, versus CoA, derivative and that Rv3389c knockout mutant had no visible variation of its fatty acid content suggested the occurrence of additional hydratase/dehydratase candidates. Accordingly, further and detailed bioinformatic analyses led to the identification of other members of the hydratases 2 family in M. tuberculosis.  相似文献   
948.
High levels of an extracellular alpha-galactosidase are produced by the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b when grown in submerse culture and induced by sucrose. The enzyme was purified 114-fold from the culture supernatant by (NH(4))(2)SO(4) fractionation, and by chromatographical steps including Sepharose CL-6B gel filtration, DEAE-Sepharose FF anion-exchange, Q-Sepharose FF anion-exchange and Superose 12 gel filtration. The purified enzyme exhibits apparent homogeneity as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and iso-electric focusing (IEF). The native molecular weight of the monomeric alpha-galactosidase is 93 kDa with an isoelectric point of 3.9. The enzyme displays a pH and temperature optimum of 5-5.5 and 65 degrees C, respectively. The purified enzyme retains more than 90% of its activity at 45 degrees C in a pH range from 5.5 to 9.0. The enzyme proves to be a glycoprotein and its carbohydrate content is 5.3%. Kinetic parameters were determined for the substrates p-nitrophenyl-alpha-galactopyranoside, raffinose and stachyose and very similar K(m) values of 1.13 mM, 1.61 mM and 1.17 mM were found. Mn(++) ions activates enzyme activity, whereas inhibitory effects can be observed with Ca(++), Zn(++) and Hg(++). Five min incubation at 65 degrees with 10 mM Ag(+) results in complete inactivation of the purified alpha-galactosidase. Amino acid sequence alignment of N-terminal sequence data allows the alpha-galactosidase from Thermomyces lanuginosus to be classified in glycosyl hydrolase family 36.  相似文献   
949.
Proliferation of dermal fibroblasts is crucial for the maintenance of skin. The small Rho GTPase, Rac1, has been identified as a key transducer of proliferative signals in various cell types, but in normal human dermal fibroblasts its significance to cell growth control has not been studied. In this study, we applied the method of RNA interference to suppress endogenous Rac1 expression and examined the consequences on human skin fibroblasts. Rac1 knock-down resulted in inhibition of DNA synthesis. This effect was not mediated by inhibition of the central transducer of proliferative stimuli, ERK1/2 or by activation of the pro-apoptotic p38. Rather, as a consequence of the suppressed Rac1 expression we observed a significant decrease in phosphorylation of c-myc, revealing for the first time that in human fibroblasts Rac1 exerts control on proliferation through c-myc phosphorylation. Thus Rac1 activates proliferation of normal fibroblasts through stimulation of c-myc phosphorylation without affecting ERK1/2 activity.  相似文献   
950.
Cell-based therapies are used to treat bone defects. We recently described that human multipotent adipose-derived stem (hMADS) cells, which exhibit a normal karyotype, self renewal, and the maintenance of their differentiation properties, are able to differentiate into different lineages. Herein, we show that hMADS cells can differentiate into osteocyte-like cells. In the presence of a low amount of serum and EGF, hMADS cells express specific molecular markers, among which alkaline phosphatase, CBFA-1, osteocalcin, DMP1, PHEX, and podoplanin and develop functional gap-junctions. When loaded on a hardening injectable bone substitute (HIBS) biomaterial and injected subcutaneously into nude mice, hMADS cells develop mineralized woven bone 4 weeks after implantation. Thus hMADS cells represent a valuable tool for pharmacological and biological studies of osteoblast differentiation in vitro and bone development in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号