首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6988篇
  免费   661篇
  国内免费   2篇
  2023年   39篇
  2022年   20篇
  2021年   133篇
  2020年   95篇
  2019年   114篇
  2018年   170篇
  2017年   133篇
  2016年   238篇
  2015年   409篇
  2014年   436篇
  2013年   507篇
  2012年   643篇
  2011年   588篇
  2010年   377篇
  2009年   314篇
  2008年   407篇
  2007年   403篇
  2006年   357篇
  2005年   327篇
  2004年   363篇
  2003年   312篇
  2002年   277篇
  2001年   53篇
  2000年   45篇
  1999年   73篇
  1998年   88篇
  1997年   48篇
  1996年   38篇
  1995年   50篇
  1994年   39篇
  1993年   39篇
  1992年   43篇
  1991年   27篇
  1990年   32篇
  1989年   28篇
  1988年   27篇
  1987年   21篇
  1986年   25篇
  1985年   23篇
  1984年   17篇
  1983年   17篇
  1982年   16篇
  1981年   19篇
  1980年   17篇
  1979年   14篇
  1978年   17篇
  1976年   12篇
  1974年   20篇
  1968年   7篇
  1965年   7篇
排序方式: 共有7651条查询结果,搜索用时 93 毫秒
991.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric membrane proteins that generate electrical rhythmicity in specialized neurons and cardiomyocytes. The channels are primarily activated by voltage but are receptors as well, binding the intracellular ligand cyclic AMP. The molecular mechanism of channel activation is still unknown. Here we analyze the complex activation mechanism of homotetrameric HCN2 channels by confocal patch-clamp fluorometry and kinetically quantify all ligand binding steps and closed-open isomerizations of the intermediate states. For the binding affinity of the second, third and fourth ligand, our results suggest pronounced cooperativity in the sequence positive, negative and positive, respectively. This complex interaction of the subunits leads to a preferential stabilization of states with zero, two or four ligands and suggests a dimeric organization of the activation process: within the dimers the cooperativity is positive, whereas it is negative between the dimers.  相似文献   
992.
X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.  相似文献   
993.
Next generation sequencing (NGS) has enabled high throughput discovery of somatic mutations. Detection depends on experimental design, lab platforms, parameters and analysis algorithms. However, NGS-based somatic mutation detection is prone to erroneous calls, with reported validation rates near 54% and congruence between algorithms less than 50%. Here, we developed an algorithm to assign a single statistic, a false discovery rate (FDR), to each somatic mutation identified by NGS. This FDR confidence value accurately discriminates true mutations from erroneous calls. Using sequencing data generated from triplicate exome profiling of C57BL/6 mice and B16-F10 melanoma cells, we used the existing algorithms GATK, SAMtools and SomaticSNiPer to identify somatic mutations. For each identified mutation, our algorithm assigned an FDR. We selected 139 mutations for validation, including 50 somatic mutations assigned a low FDR (high confidence) and 44 mutations assigned a high FDR (low confidence). All of the high confidence somatic mutations validated (50 of 50), none of the 44 low confidence somatic mutations validated, and 15 of 45 mutations with an intermediate FDR validated. Furthermore, the assignment of a single FDR to individual mutations enables statistical comparisons of lab and computation methodologies, including ROC curves and AUC metrics. Using the HiSeq 2000, single end 50 nt reads from replicates generate the highest confidence somatic mutation call set.  相似文献   
994.
Staphylococcus aureus is a pyogenic abscess-forming facultative pathogenic microorganism expressing a large set of virulence-associated factors. Among these, secreted proteins with binding capacity to plasma proteins (e.g. fibrinogen binding proteins Eap and Emp) and prothrombin activators such as Coagulase (Coa) and vWbp are involved in abscess formation. By using a three-dimensional collagen gel (3D-CoG) supplemented with fibrinogen (Fib) we studied the growth behavior of S. aureus strain Newman and a set of mutants as well as their interaction with mouse neutrophils by real-time confocal microscopy. In 3D-CoG/Fib, S. aureus forms microcolonies which are surrounded by an inner pseudocapsule and an extended outer dense microcolony-associated meshwork (MAM) containing fibrin. Coa is involved in formation of the pseudocapsule whereas MAM formation depends on vWbp. Moreover, agr-dependent dispersal of late stage microcolonies could be observed. Furthermore, we demonstrate that the pseudocapsule and the MAM act as mechanical barriers against neutrophils attracted to the microcolony. The thrombin inhibitor argatroban is able to prevent formation of both pseudocapsule and MAM and supports access of neutrophils to staphylococci. Taken together, this model can simulate specific stages of S. aureus abscess formation by temporal dissection of bacterial growth and recruitment of immune cells. It can complement established animal infection models in the development of new treatment options.  相似文献   
995.
IgA nephropathy (IgAN), major cause of kidney failure worldwide, is common in Asians, moderately prevalent in Europeans, and rare in Africans. It is not known if these differences represent variation in genes, environment, or ascertainment. In a recent GWAS, we localized five IgAN susceptibility loci on Chr.6p21 (HLA-DQB1/DRB1, PSMB9/TAP1, and DPA1/DPB2 loci), Chr.1q32 (CFHR3/R1 locus), and Chr.22q12 (HORMAD2 locus). These IgAN loci are associated with risk of other immune-mediated disorders such as type I diabetes, multiple sclerosis, or inflammatory bowel disease. We tested association of these loci in eight new independent cohorts of Asian, European, and African-American ancestry (N = 4,789), followed by meta-analysis with risk-score modeling in 12 cohorts (N = 10,755) and geospatial analysis in 85 world populations. Four susceptibility loci robustly replicated and all five loci were genome-wide significant in the combined cohort (P = 5×10−32–3×10−10), with heterogeneity detected only at the PSMB9/TAP1 locus (I2 = 0.60). Conditional analyses identified two new independent risk alleles within the HLA-DQB1/DRB1 locus, defining multiple risk and protective haplotypes within this interval. We also detected a significant genetic interaction, whereby the odds ratio for the HORMAD2 protective allele was reversed in homozygotes for a CFHR3/R1 deletion (P = 2.5×10−4). A seven–SNP genetic risk score, which explained 4.7% of overall IgAN risk, increased sharply with Eastward and Northward distance from Africa (r = 0.30, P = 3×10−128). This model paralleled the known East–West gradient in disease risk. Moreover, the prediction of a South–North axis was confirmed by registry data showing that the prevalence of IgAN–attributable kidney failure is increased in Northern Europe, similar to multiple sclerosis and type I diabetes. Variation at IgAN susceptibility loci correlates with differences in disease prevalence among world populations. These findings inform genetic, biological, and epidemiological investigations of IgAN and permit cross-comparison with other complex traits that share genetic risk loci and geographic patterns with IgAN.  相似文献   
996.
The excitation of surface plasmon polaritons (SPP) at a gold?Cvacuum interface by femtosecond light pulses mediated by organic nanofiber-induced dielectric perturbations is observed using interferometric time-resolved photoemission electron microscopy. The experimental data are quantitatively reproduced by analytic simulations, where the nanofibers are considered as superior source of the SPP emission. The flexibility and tuneability of phenylene-based nanofibers in their morphology and intrinsic optical properties open up future applications to fabricate custom-designed nanoscale sources of SPP.  相似文献   
997.
In this study thirty-three novel indole derivatives were designed and synthesized based on the structure of deformylflustrabromine B (1), a metabolite isolated from the marine bryozoan Flustra foliacea L. The syntheses were carried out using standard methodologies and in good yields. The molecules were tested for their affinities for the α4β21, α3β41, α71 and (α1)2β1γδ nicotinic acetylcholine receptor (nAChR) subtypes. Binding assays showed that, among these ligands, compound 7c exhibited the highest affinity with Ki = 136.1, 93.9 and 862.4 nM for the α4β21, α3β41, and α71 nAChRs subtypes, respectively. These results indicated that the indole core might be a useful scaffold for the development of new potent and selective nAChR ligands.  相似文献   
998.
Intrinsically disordered proteins that acquire their three dimensional structures only upon binding to their targets are very important in cellular signal regulation. While experimental studies have been made on the structures of both bound (structured) and unbound (disordered) states, less is known about the actual folding-binding transition. Coarse grained simulations using native-centric (i.e. Gō) potentials have been particularly useful in addressing this problem, given the large search space for IDP binding, but have well-known deficiencies in reproducing the unfolded state structure and dynamics. Here, we investigate the interaction of HIF1α with CBP using a hierarchy of coarse-grained models, in each case matching the binding affinity at 300 K to the experimental value. Starting from a pure Gō-like model based on the native structure of the complex we go on to consider a more realistic model of helix propensity in the HIF1α, and finally the effect of non-native interactions between binding partners. We find structural disorder (i.e."fuzziness") in the bound state of HIF1α in all models which is supported by the results of atomistic simulations. Correcting the over-stabilized helices in the unbound state gives rise to a more cooperative folding-binding transition (destabilizing partially bound intermediates). Adding non-native contacts lowers the free energy barrier for binding to an almost barrierless scenario, leading to higher binding/unbinding rates relative to the other models, in better agreement with the near diffusion-limited binding rates measured experimentally. Transition state structures for the three models are highly disordered, supporting a fly-casting mechanism for binding.  相似文献   
999.
ABSTRACT: BACKGROUND: The human granulocyte colony-stimulating factor (G-CSF) is routinely applied to support recovery of granulopoiesis during the course of cytotoxic chemotherapies. However, optimal use of the drug is largely unknown. We showed in the past that a biomathematical compartment model of human granulopoiesis can be used to make clinically relevant predictions regarding new, yet untested chemotherapy regimen. In the present paper, we aim to extend this model by a detailed pharmacokinetic and -dynamic modelling of two commonly used G-CSF derivatives Filgrastim and Pegfilgrastim. RESULTS: Model equations are based on our physiological understanding of the drugs which are delayed absorption of G-CSF when applied to the subcutaneous tissue, dose-dependent bioavailability, unspecific first order elimination, specific elimination in dependence on granulocyte counts and reversible protein binding. Pharmacokinetic differences between Filgrastim and Pegfilgrastim were modelled as different parameter sets. Our former cell-kinetic model of granulopoiesis was essentially preserved, except for a few additional assumptions and simplifications. We assumed a delayed action of G-CSF on the bone marrow, a delayed action of chemotherapy and differences between Filgrastim and Pegfilgrastim with respect to stimulation potency of the bone marrow. Additionally, we incorporated a model of combined action of Pegfilgrastim and Filgrastim or endogenous G-CSF which interact via concurrent receptor binding. Unknown pharmacokinetic or cell-kinetic parameters were determined by fitting the predictions of the model to available datasets of G-CSF applications, chemotherapy applications or combinations of it. Data were either extracted from the literature or were received from cooperating clinical study groups. Model predictions fitted well to both, datasets used for parameter estimation and validation scenarios as well. A unique set of parameters was identified which is valid for all scenarios considered. Differences in pharmacokinetic parameter estimates between Filgrastim and Pegfilgrastim were biologically plausible throughout. CONCLUSION: We conclude that we established a comprehensive biomathematical model to explain the dynamics of granulopoiesis under chemotherapy and applications of two different G-CSF derivatives. We aim to apply the model to a large variety of chemotherapy regimen in the future in order to optimize corresponding G-CSF schedules or to individualize G-CSF treatment according to the granulotoxic risk of a patient.  相似文献   
1000.
Substrate cycles, also known as futile cycles, are cyclic metabolic routes that dissipate energy by hydrolysing cofactors such as ATP. They were first described to occur in the muscles of bumblebees and brown adipose tissue in the 1970s. A popular example is the conversion of fructose?6-phosphate to fructose?1,6-bisphosphate and back. In the present study, we analyze a large number of substrate cycles in human metabolism that consume ATP and discuss their statistics. For this purpose, we use two recently published methods (i.e. EFMEvolver and the K-shortest EFM method) to calculate samples of 100?000 and 15?000 substrate cycles, respectively. We find an unexpectedly high number of substrate cycles in human metabolism, with up to 100 reactions per cycle, utilizing reactions from up to six different compartments. An analysis of tissue-specific models of liver and brain metabolism shows that there is selective pressure that acts against the uncontrolled dissipation of energy by avoiding the coexpression of enzymes belonging to the same substrate cycle. This selective force is particularly strong against futile cycles that have a high flux as a result of thermodynamic principles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号