首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   817篇
  免费   41篇
  2022年   3篇
  2021年   11篇
  2020年   4篇
  2019年   7篇
  2018年   9篇
  2017年   10篇
  2016年   14篇
  2015年   17篇
  2014年   18篇
  2013年   39篇
  2012年   51篇
  2011年   50篇
  2010年   20篇
  2009年   26篇
  2008年   40篇
  2007年   56篇
  2006年   51篇
  2005年   59篇
  2004年   61篇
  2003年   43篇
  2002年   48篇
  2001年   14篇
  2000年   12篇
  1999年   17篇
  1998年   13篇
  1997年   11篇
  1996年   16篇
  1995年   9篇
  1994年   7篇
  1992年   6篇
  1991年   8篇
  1990年   8篇
  1989年   11篇
  1988年   10篇
  1987年   8篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   11篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
  1969年   5篇
  1968年   2篇
排序方式: 共有858条查询结果,搜索用时 375 毫秒
91.
Transcriptional induction of Smurf2 ubiquitin ligase by TGF-beta   总被引:1,自引:0,他引:1  
Smad ubiquitination regulatory factor 2 (Smurf2), a ubiquitin ligase for Smads, plays critical roles in the regulation of transforming growth factor-beta (TGF-beta)-Smad signaling via ubiquitin-dependent degradation of Smad2 and Smad7. We found that TGF-beta stimulates Smurf2 expression. TGF-beta activated the Smurf2 promoter in a TGF-beta responsive cell lines, whereas IL-1alpha, PDGF and epidermal growth factor did not. TGF-beta-mediated Smurf2 promoter activation was inhibited by Smad7 or an activin receptor-like kinase 5 inhibitor but not by dominant negative Smad or disruption of Smad-binding elements in the promoter. Moreover, inhibition of the phosphatidil inositol 3 kinase (PI3K)/Akt pathway suppressed TGF-beta-mediated Smurf2 induction. These results suggest that TGF-beta stimulates Smurf2 expression by Smad-independent pathway such as PI3K/Akt pathway via TGF-beta receptor.  相似文献   
92.
Aequoria victoria green fluorescent protein (GFP) is a revolutionary molecular biology tool because of its spontaneous peptide backbone cyclization and chromophore formation from residues Ser65, Tyr66, and Gly67. Here we use structure-based design, comprehensive targeted mutagenesis, and high-resolution crystallography to probe the significant functional role of conserved Arg96 (R96) in chromophore maturation. The R96M GFP variant, in which the R96M side chain is similar in volume but lacks the R96 positive charge, exhibits dramatically slower chromophore maturation kinetics (from hours to months). Comparison of the precyclized conformation of the chromophore-forming residues with the mature R96M chromophore reveals a similar Y66 conformer, contrary to the large Y66 conformational change previously defined in the slowly maturing R96A variant [Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A., and Getzoff, E. D. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 12111-12116]. Comprehensive R96 mutagenesis and fluorescent colony screening indicate that only the R96K substitution restores wild-type maturation kinetics. Further, we show that the slowly maturing R96A variant can be complemented with a Q183R second-site mutation designed to restore the missing R96 positive charge and rapid fluorophore biosynthesis. Moreover, comparative structural analysis of R96M, R96K, R96A/Q183R, and wild-type GFP reveals the importance of the presence of positive charge, rather than its exact position. Together, these structural, mutational, and biochemical results establish a pivotal role for the R96 positive charge in accelerating the GFP post-translational modification, with implications for peptide backbone cyclization in GFP, its homologues, and related biological systems.  相似文献   
93.
Mammalian sperm-borne oocyte activating factor (SOAF) induces oocyte activation from a compartment that engages the oocyte cytoplasm, but it is not known how. A SOAF-containing extract (SE) was solubilized from the submembrane perinuclear matrix, a domain that enters the egg. SE initiated activation sufficient for full development. Microinjection coupled to tandem mass spectrometry enabled functional correlation profiling of fractionated SE without a priori assumptions about its chemical nature. Phospholipase C-zeta (PLCzeta) correlated absolutely with activating ability. Immunoblotting confirmed this and showed that the perinuclear matrix is the major site of 72-kDa PLCzeta. Oocyte activation was efficiently induced by 1.25 fg of sperm PLCzeta, corresponding to a fraction of one sperm equivalent (approximately 0.03). Immunofluorescence microscopy localized sperm head PLCzeta to a post-acrosomal region that becomes rapidly exposed to the ooplasm following gamete fusion. This multifaceted approach suggests a mechanism by which PLCzeta originates from an oocyte-penetrating assembly--the sperm perinuclear matrix--to induce mammalian oocyte activation at fertilization.  相似文献   
94.
95.
Regulatory mechanisms and function of ERK MAP kinases   总被引:7,自引:0,他引:7  
Spatiotemporal control of the Ras/ERK MAP kinase signaling pathway is a key factor for determining the specificity of cellular responses including cell proliferation, cell differentiation and cell survival. The fidelity of this signaling is regulated by docking interactions as well as scaffolding. Subcellular localization of ERK is controlled by cytoplasmic ERK anchoring proteins that have a nuclear export signal (NES), such as MEK. In quiescent cells, ERK and MEK localize to the cytoplasm. In response to stimulation, dissociation of the MEK-ERK complex is induced and activated ERK translocates to the nucleus. Recently, several negative regulators for Ras/ERK signaling have been identified and their detailed molecular mechanisms have been analyzed. Among them, Sprouty and Sef act as a temporal and a spatial regulator, respectively, for Ras/ERK signaling. Thus, multiple factors are involved in control of Ras/ERK signaling.  相似文献   
96.
97.
Src homology 2-containing phosphotyrosine phosphatase (Shp2) functions as a positive effector in receptor tyrosine kinase (RTK) signaling immediately proximal to activated receptors. However, neither its physiological substrate(s) nor its mechanism of action in RTK signaling has been defined. In this study, we demonstrate that Sprouty (Spry) is a possible target of Shp2. Spry acts as a conserved inhibitor of RTK signaling, and tyrosine phosphorylation of Spry is indispensable for its inhibitory activity. Shp2 was able to dephosphorylate fibroblast growth factor receptor-induced phosphotyrosines on Spry both in vivo and in vitro. Shp2-mediated dephosphorylation of Spry resulted in dissociation of Spry from Grb2. Furthermore, Shp2 could reverse the inhibitory effect of Spry on FGF-induced neurite outgrowth and MAP kinase activation. These findings suggest that Shp2 acts as a positive regulator in RTK signaling by dephosphorylating and inactivating Spry.  相似文献   
98.
99.
100.
The mosquito midgut ookinete stage of the malaria parasite, Plasmodium, possesses microneme secretory organelles that mediate locomotion and midgut wall egress to establish sporogonic stages and subsequent transmission. The purpose of this study was 2-fold: 1) to determine whether there exists a single micronemal population with respect to soluble and membrane-associated secreted proteins; and 2) to evaluate the ookinete micronemal proteins chitinase (PgCHT1), circumsporozoite and TRAP-related protein (CTRP), and von Willebrand factor A domain-related protein (WARP) as immunological targets eliciting sera-blocking malaria parasite infectivity to mosquitoes. Indirect immunofluorescence localization studies in Plasmodium gallinaceum using specific antisera showed that all three proteins are distributed intracellularly with a similar granular cytoplasmic appearance and with focal concentration of PgCHT1 and PgCTRP, but not PgWARP, at the ookinete apical end. Immunogold double-labeling electron microscopy, using antisera against the membrane-associated protein CTRP and the soluble WARP, showed that these two proteins co-localized to the same micronemal population. Within the microneme CTRP was associated peripherally at the microneme membrane, whereas PgCHT1 and WARP were diffuse within the micronemal lumen. Sera produced against Plasmodium falciparum WARP significantly reduced the infectivity of P. gallinaceum to Aedes aegypti and P. falciparum to Anopheles mosquitoes. Antisera against PgCTRP and PgCHT1 also significantly reduced the infectivity of P. gallinaceum for A. aegypti. These results support the concept that ookinete micronemal proteins may constitute a general class of malaria transmission-blocking vaccine candidates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号