首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   6篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2016年   7篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   18篇
  2011年   11篇
  2010年   8篇
  2009年   10篇
  2008年   13篇
  2007年   10篇
  2006年   10篇
  2005年   6篇
  2004年   5篇
  2003年   6篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有159条查询结果,搜索用时 187 毫秒
91.
92.
Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and is often resistant to standard chemotherapeutic options, contributing to extremely poor disease outcomes. Members of the nuclear receptor superfamily carry out essential biological functions such as hormone signaling and are successfully targeted in the treatment of endocrine-related malignancies. Liver X receptors (LXRs) are nuclear receptors that regulate cholesterol homeostasis, lipid metabolism, and inflammation, and LXR agonists have been developed to regulate LXR function in these processes. Intriguingly, these compounds also exhibit antiproliferative activity in diverse types of cancer cells. In this study, LXR agonist treatments disrupted proliferation, cell-cycle progression, and colony-formation of PDAC cells. At the molecular level, treatments downregulated expression of proteins involved in cell cycle progression and growth factor signaling. Microarray experiments further revealed changes in expression profiles of multiple gene networks involved in biological processes and pathways essential for cell growth and proliferation following LXR activation. These results establish the antiproliferative effects of LXR agonists and potential mechanisms of action in PDAC cells and provide evidence for their potential application in the prevention and treatment of PDAC.  相似文献   
93.
Herbicide efficacy is known to be influenced by temperature, however, underlying mechanism(s) are poorly understood. A marked alteration in mesotrione [a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor] efficacy on Palmer amaranth (Amaranthus palmeri S. Watson) was observed when grown under low- (LT, 25/15°C, day/night temperatures) and high (HT, 40/30°C) temperature compared to optimum (OT, 32.5/22.5°C) temperature. Based on plant height, injury, and mortality, Palmer amaranth was more sensitive to mesotrione at LT and less sensitive at HT compared to OT (ED50 for mortality; 18.5, 52.3, and 63.7 g ai ha-1, respectively). Similar responses were observed for leaf chlorophyll index and photochemical efficiency of PSII (Fv/Fm). Furthermore, mesotrione translocation and metabolism, and HPPD expression data strongly supported such variation. Relatively more mesotrione was translocated to meristematic regions at LT or OT than at HT. Based on T50 values (time required to metabolize 50% of the 14C mesotrione), plants at HT metabolized mesotrione faster than those at LT or OT (T50; 13, 21, and 16.5 h, respectively). The relative HPPD:CPS (carbamoyl phosphate synthetase) or HPPD:β-tubulin expression in mesotrione-treated plants increased over time in all temperature regimes; however, at 48 HAT, the HPPD:β-tubulin expression was exceedingly higher at HT compared to LT or OT (18.4-, 3.1-, and 3.5-fold relative to untreated plants, respectively). These findings together with an integrated understanding of other interacting key environmental factors will have important implications for a predictable approach for effective weed management.  相似文献   
94.
Focus in this Letter is made to design and synthesize a series of nineteen new 6-(4-((substituted-1H-1,2,3-triazol-4-yl)methyl)piperazin-1-yl)phenanthridine analogues employing click chemistry and evaluated for their anti-tubercular activity against Mycobacterium tuberculosis H37Rv. Among the tested compounds, 7f and 7j exhibited good activity (MIC = 3.125 μg/mL), while 8a displayed excellent activity (MIC = 1.56 μg/mL) against the growth of M. tuberculosis H37Rv. In addition, 7f, 7j and 8a compounds were subjected to cytotoxic studies against mouse macrophage (RAW264.7) cell lines and the selectivity index values are >15 indicating suitability of compounds for further drug development.  相似文献   
95.
Undesired cell migration after targeted cell transplantation potentially limits beneficial effects for cardiac regeneration. MicroRNAs are known to be involved in several cellular processes, including cell migration. Here, we attempt to reduce human cardiomyocyte progenitor cell (hCMPC) migration via increasing microRNA‐155 (miR‐155) levels, and investigate the underlying mechanism. Human cardiomyocyte progenitor cells (hCMPCs) were transfected with pre‐miR‐155, anti‐miR‐155 or control‐miR (ctrl‐miR), followed by scratch‐ and transwell‐ assays. These functional assays displayed that miR‐155 over‐expression efficiently inhibited cell migration by 38 ± 3.6% and 59 ± 3.7% respectively. Conditioned medium from miR‐155 transfected cells was collected and zymography analysis showed a significant decrease in MMP‐2 and MMP‐9 activities. The predicted 3′‐UTR of MMP‐16, an activator of MMP‐2 and ‐9, was cloned into the pMIR‐REPORT vector and luciferase assays were performed. Introduction of miR‐155 significantly reduced luciferase activity which could be abolished by cotransfection with anti‐miR‐155 or target site mutagenesis. By using MMP‐16 siRNA to reduce MMP‐16 levels or by using an MMP‐16 blocking antibody, hCMPC migration could be blocked as well. By directly targeting MMP‐16, miR‐155 efficiently inhibits cell migration via a reduction in MMP‐2 and ‐9 activities. Our study shows that miR‐155 might be used to improve local retention of hCMPCs after intramyocardial delivery.  相似文献   
96.
Currently, there are few predictive biomarkers in key biomonitoring species, such as oysters, that can detect heavy metal pollution in coastal waterways. Several attributes make oysters superior to other organisms for positive biomonitoring of heavy metal pollution. In particular, they are filter feeders with a high capacity for bioaccumulation. In this study, we used two proteomics approaches, namely label-free shotgun proteomics based on SDS-PAGE gel separation and gas phase fractionation, to investigate the heavy metal stress responses of Sydney rock oysters. Protein samples were prepared from haemolymph of oysters exposed to 100 μg/L of PbCl(2), CuCl(2), or ZnCl(2) for 4 days in closed aquaria. Peptides were identified using a Bivalvia protein sequence database, due to the unavailability of a complete oyster genome sequence. Statistical analysis revealed 56 potential biomarker proteins, as well as several protein biosynthetic pathways to be greatly impacted by metal stress. These have the potential to be incorporated into bioassays for prevention and monitoring of heavy metal pollution in Australian oyster beds. The study confirms that proteomic analysis of biomonitoring species is a promising approach for assessing the effects of environmental pollution, and our experiments have provided insights into the molecular mechanisms underlying oyster stress responses.  相似文献   
97.
RELAY CELLS ARE PREVALENT THROUGHOUT SENSORY SYSTEMS AND RECEIVE TWO TYPES OF INPUTS: driving and modulating. The driving input contains receptive field properties that must be transmitted while the modulating input alters the specifics of transmission. For example, the visual thalamus contains relay neurons that receive driving inputs from the retina that encode a visual image, and modulating inputs from reticular activating system and layer 6 of visual cortex that control what aspects of the image will be relayed back to visual cortex for perception. What gets relayed depends on several factors such as attentional demands and a subject's goals. In this paper, we analyze a biophysical based model of a relay cell and use systems theoretic tools to construct analytic bounds on how well the cell transmits a driving input as a function of the neuron's electrophysiological properties, the modulating input, and the driving signal parameters. We assume that the modulating input belongs to a class of sinusoidal signals and that the driving input is an irregular train of pulses with inter-pulse intervals obeying an exponential distribution. Our analysis applies to any [Formula: see text] order model as long as the neuron does not spike without a driving input pulse and exhibits a refractory period. Our bounds on relay reliability contain performance obtained through simulation of a second and third order model, and suggest, for instance, that if the frequency of the modulating input increases or the DC offset decreases, then relay increases. Our analysis also shows, for the first time, how the biophysical properties of the neuron (e.g. ion channel dynamics) define the oscillatory patterns needed in the modulating input for appropriately timed relay of sensory information. In our discussion, we describe how our bounds predict experimentally observed neural activity in the basal ganglia in (i) health, (ii) in Parkinson's disease (PD), and (iii) in PD during therapeutic deep brain stimulation. Our bounds also predict different rhythms that emerge in the lateral geniculate nucleus in the thalamus during different attentional states.  相似文献   
98.
Electrochemical oxidation for the treatment of textile industry wastewater   总被引:2,自引:0,他引:2  
This study elucidates the reduction of organics from textile effluents through electrochemical oxidation technique. Effect of pH and current intensity were investigated in this system. It was found that degradation was maximum at the current intensity of 0.6 A and at a pH of 1.3. Under the same experimental conditions the removal of chemical oxygen demand (COD), total solids, total dissolved solids and total organic carbon were found to be approximately 68%, 49.2%, 50.7% and 96.8%, respectively. Effect of current intensity on color removal was also investigated as a function of electrolysis time (30-210 minutes) and it showed that maximum removal efficiency (96%) was reached within 60 minutes at 0.6 A. While studying the effect of pH on COD removal, it was observed that a decrease in pH to an optimum of 1.3 showed maximum COD reduction of 68%. These results suggest an important role of these parameters in electrochemical process for removing organic pollutants.  相似文献   
99.
The p53 protein responds to cellular stress and regulates genes involved in cell cycle, apoptosis, and DNA repair. Under normal conditions, p53 levels are kept low through MDM2-mediated ubiquitination and proteosomal degradation. In search for novel proteins that participate in this regulatory loop, we performed an MDM2 peptide pull-down assay and mass spectrometry to screen for potential interacting partners of MDM2. We identified ribosomal protein S3 (RPS3), whose interaction with MDM2, and notably p53, was further established by His and GST pull-down assays, fluorescence resonance energy transfer and an in situ proximity ligation assay. Additionally, in cells exposed to oxidative stress, p53 levels increased slightly over 24 h, whereas MDM2 levels declined after 6 h exposure, but rose over the next 18 h of exposure. Conversely, in cells exposed to oxidative stress and harboring siRNA to knockdown RPS3 expression, decreased p53 levels and loss of the E3 ubiquitin ligase domain possessed by MDM2 were observed. DNA pull-down assays using a 7,8-dihydro-8-oxoguanine duplex oligonucleotide as a substrate found that RPS3 acted as a scaffold for the additional binding of MDM2 and p53, suggesting that RPS3 interacts with important proteins involved in maintaining genomic integrity.  相似文献   
100.
α-Amylase from Sorghum bicolor, is reversibly unfolded by chemical denaturants at pH 7.0 in 50 mM Hepes containing 13.6 mM calcium and 15 mM DTT. The isothermal equilibrium unfolding at 27 °C is characterized by two state transition with ΔG (H2O) of 16.5 kJ mol−1 and 22 kJ mol−1, respectively, at pH 4.8 and pH 7.0 for GuHCl and ΔG (H2O) of 25.2 kJ mol−1 at pH 4.8 for urea. The conformational stability indicators such as the change in excess heat capacity (ΔCp), the unfolding enthalpy (Hg) and the temperature at ΔG = 0 (Tg) are 17.9 ± 0.7 kJ mol−1 K−1, 501.2 ± 18.2 kJ mol1 and 337.3 ± 6.9 K at pH 4.8 and 14.3 ± 0.5 kJ mol−1 K−1, 509.3 ± 21.7 kJ mol−1 and 345.4 ± 4.8 K at pH 7.0, respectively. The reactivity of the conserved cysteine residues, during unfolding, indicates that unfolding starts from the ‘B’ domain of the enzyme. The oxidation of cysteine residues, during unfolding, can be prevented by the addition of DTT. The conserved cysteine residues are essential for enzyme activity but not for the secondary and tertiary fold acquired during refolding of the denatured enzyme. The pH dependent stability described by ΔG (H2O) and the effect of salt on urea induced unfolding confirm the role of electrostatic interactions in enzyme stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号