首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101833篇
  免费   1126篇
  国内免费   1507篇
  2024年   18篇
  2023年   95篇
  2022年   150篇
  2021年   470篇
  2020年   302篇
  2019年   410篇
  2018年   12142篇
  2017年   10887篇
  2016年   7787篇
  2015年   1171篇
  2014年   1020篇
  2013年   1021篇
  2012年   5030篇
  2011年   13475篇
  2010年   12384篇
  2009年   8585篇
  2008年   10132篇
  2007年   11710篇
  2006年   585篇
  2005年   784篇
  2004年   1186篇
  2003年   1262篇
  2002年   997篇
  2001年   447篇
  2000年   339篇
  1999年   213篇
  1998年   110篇
  1997年   122篇
  1996年   118篇
  1995年   74篇
  1994年   88篇
  1993年   85篇
  1992年   102篇
  1991年   108篇
  1990年   67篇
  1989年   71篇
  1988年   64篇
  1987年   53篇
  1986年   18篇
  1985年   30篇
  1984年   19篇
  1983年   40篇
  1982年   16篇
  1981年   12篇
  1979年   16篇
  1972年   250篇
  1971年   275篇
  1965年   15篇
  1962年   24篇
  1944年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Contemporary textbooks often define evolution in terms of the replication, mutation, and selective retention of DNA sequences, ignoring the contribution of the physical processes involved. In the closing line of The Origin of Species, however, Darwin recognized that natural selection depends on prior more basic living functions, which he merely described as life’s “several powers.” For Darwin these involved the organism’s capacity to maintain itself and to reproduce offspring that preserve its critical functional organization. In modern terms we have come to recognize that this involves the continual generation of complex organic molecules in complex configurations accomplished with the aid of persistent far-from-equilibrium chemical self-organizing and self-assembling processes. But reliable persistence and replication of these processes also requires constantly available constraints and boundary conditions. Organism autonomy further requires that these constraints and co-dependent dynamics are reciprocally produced, each by the other. In this paper I argue that the different constraint-amplifying dynamics of two or more self-organizing processes can be coupled so that they reciprocally generate each other’s critical supportive boundary conditions. This coupling is a higher-order constraint (which can be distributed among components or offloaded onto molecular structures) that effectively constitutes a sign vehicle “interpreted” by the synergistic dynamics of these co-dependent self-organizing process so that they reconstitute this same semiotic-dynamic relationship and its self-reconstituting potential in new substrates. This dynamical co-dependence constitutes Darwin’s “several powers” and is the basis of the biosemiosis that enables evolution.  相似文献   
993.
Any biological species of biparental organisms necessarily includes, and is fundamentally dependent on, sign processes between individuals. In this case, the natural category of the species is based on family resemblances (in the Wittgensteinian sense), which is why a species is not a natural kind. We describe the mechanism that generates the family resemblance. An individual recognition window and biparental reproduction almost suffice as conditions to produce species naturally. This is due to assortativity of mating which is not based on certain individual traits, but on the difference between individuals. The biosemiotic model described here explains what holds a species together. It also implies that boundaries of a species are fundamentally fuzzy, and that character displacement occurs in case of sympatry. Speciation is a special case of discretisation that is an inevitable result of any communication system in work. The biosemiotic mechanism provides the conditions and communicative restrictions for the origin and persistence of diversity in the realm of living (communicative and semiotic) systems.  相似文献   
994.

Background

The mechanism of db-cAMP regulating fat deposition and improving lean percentage is unclear and needs to be further studied.

Methods

Eighteen 100-day-old Duroc × Landrance × Large White barrows (49.75?±?0.75 kg) were used for experiment 1, and 15 eighteen 135-day-old barrows (78.34?±?1.22 kg) were used for experiment 2 to investigate the effects of dietary dibutyryl-cAMP (db-cAMP) on fat deposition in finishing pigs. Pigs were fed with a corn-soybean meal-based diet supplemented with 0 or 15 mg/kg db-cAMP, and both experiments lasted 35 days, respectively.

Results

The results showed that db-cAMP decreased the backfat thickness, backfat percentage, and diameter of backfat cells without changing the growth performance or carcass characteristics in both experiments, and this effect was more marked in experiment 1 than in experiment 2; db-cAMP enhanced the activity of the growth hormone–insulin-like growth factor-1 (GH-IGF-1) axis and pro-opiomelanocortin (POMC) system in both experiments, which suppressed the accumulation of backfat deposition; microarray analysis showed that db-cAMP suppressed the inflammatory system within the adipose tissue related to insulin sensitivity, which also reduced fat synthesis.

Conclusions

In summary, the effect of db-cAMP on suppressing fat synthesis and accumulation is better in the earlier phase than in the later phase of finishing pigs, and db-cAMP plays this function by increasing the activity of the GH-IGF-1 axis and POMC system, while decreasing the inflammatory system within the adipose tissue related to insulin sensitive or lipolysis.
  相似文献   
995.
996.
Starch extracted from ensete (Ensete ventricosum, Musaceae) also called false banana, was modified by hydrothermal methods of annealing (ANN) and heat moisture treatment (HMT) processes. The effects of treatments on functional, pasting properties, morphology and diffraction pattern of the starch were studied. Swelling power and solubility changed significantly (p < 0.05) with modification. Water absorption (89.3–152.4 %) and oil absorption (105.0–161.3 %) capacities increased significantly (p < 0.05) with ANN and HMT. Alkaline water retention decreased with ANN but increased significantly (p < 0.05) with HMT. Hydrothermal modifications led to reduction in least gelation capacity of ensete starch. In terms of the pasting properties studied, the hydrothermal modifications imparted improved gel strength, increased paste stability, reduced retrogradation tendency and slowed staling rate on ensete starch. Scanning electron micrographs depicted fairly angular and elliptical shapes with diverse sizes for the starch granules. Clustering of granules, mucilage formation, fissures and surface indentation which were gaining prominence with increasing moisture level and temperature of treatment were the hallmarks of modified samples. Native and modified ensete starches showed similar type-B diffraction pattern with maximum peak range of 19.8–20.0o (2θ). Findings of this work showed that hydrothermally modified ensete starches possess excellent value-added potentials for utilization in pharmaceuticals and food applications.  相似文献   
997.
Hansen solubility parameters (HSPs), often used to predict the miscibility between two compounds, are an alternative tool in evaluating the ability of the solvent to interact via dispersion, dipole-dipole, and hydrogen bonding interactions. The aim of this paper is to find a simple way to calculate HSPs for complex mixtures of triglycerides (TAGs). HSPs were calculated using two approaches: the first assumes that the contributions to the dispersion, dipole-dipole, and hydrogen bonding interactions may be subdivided into larger functional moieties (i.e., fatty acids and fatty acid methyl esters) that are additive, while the second approach assumes that vegetable oils are comprised of mixtures of simple TAGs in the same mass fractions as the fatty acids. The HSPs obtained using the two approaches are compared to reference values determined using the “Hansen Solubility Parameters in Practice” software (HSPiP) considering the complex TAG profile for each vegetable oil.HSPs for vegetable oils, obtained with the HSPiP software, did not correspond well to the HSPs obtained from the group contribution approach, when using fatty acids, fatty acids + glycerol or fatty acid methyl esters. In contrast, the HSPs calculated for vegetable oils, assuming that all TAGs are simple and in the same mass fractions as the fatty acids, provide similar values to the HSPs obtained from the HSPiP software. Therefore, it is possible to calculate the HSPs for complex oils by simply knowing the fatty acid composition. Knowledge of HSPs may be used to rationalize the ability of certain low molecular weight molecules to develop organogels in vegetable oils as well as the crystallization of triglycerides.  相似文献   
998.
999.
Human activity and land use changes in the past decades have led to landscape homogenization and small-scale fragmentation of grassland habitats in most regions of central Europe. As a result, populations of many grassland species are small and strongly fragmented, facing extinction due to genetic depauperation and local maladaptation in remnant habitats. In this study, remaining populations of the strongly endangered grassland species Dianthus seguieri ssp. glaber (“Ragged Pink”) in Bavaria were investigated in order to evaluate the environmental factors influencing its genetic variation and performance. We first evaluated habitat, vegetation and population structure. Species performance was then studied by assessing the number of generative shoots, flowers and fertile capsules; and evaluating seed weight and seed viability. Finally, genetic variation was analyzed using molecular markers (AFLPs). Our analyses revealed that population size and land use abandonment have the strongest impact on genetic variation and species’ performance. Large and extended populations were most variable. 72 % of overall genetic variability of Dianthus seguieri ssp. glaber was found to be within populations, whereas 28 % remained between populations. Increased vegetation height and coverage, and a high proportion of gramineous species resulting from the lack of land use, reduced genetic variation, effective fruit and seed set. Our study shows that both population size and land use abandonment need to be considered to ensure the long term protection of endangered plant species. Maintaining an open habitat structure and adequate soil nutrient conditions through targeted annual mowing regime, over-storey vegetation trimming and green waste removal and the establishment of vegetation buffer strips will allow this species’ persistence and continuous recruitment.  相似文献   
1000.
Genetic diversity is the raw material for evolutionary change, so a species’ capacity to maintain its genetic diversity is a major concern in conservation genetics. Although genetic diversity within a population is reduced through time by genetic drift, gene flow among populations can act to recover or add new genetic variants. The goal of this study was to infer potential connectivity among isolated-by-sea populations of the vulnerable freshwater blenny (Salaria fluviatilis) and to determine if gene flow could contribute to maintaining genetic diversity in connected populations. Four genetic clusters (one small at the North, one large at the South for both East and West coasts) were detected with different clustering methods (FLOCK, STUCTURE, UPGMA, AMOVA). The two larger genetic clusters with higher migration-rate estimates among localities had higher genetic diversity and allelic richness and lower relatedness between individuals, compared to isolated localities found in smaller clusters. Our results also suggest that sea currents may facilitate fish movements among neighbouring rivers. Overall, gene flow among isolated-by-sea but close rivers could maintain the evolutionary potential of freshwater blenny populations. This finding should be considered when elaborating a conservation program for this species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号