首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   9篇
  国内免费   1篇
  2021年   9篇
  2020年   3篇
  2019年   7篇
  2017年   4篇
  2016年   6篇
  2015年   11篇
  2014年   5篇
  2013年   8篇
  2012年   12篇
  2011年   11篇
  2010年   6篇
  2009年   8篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   8篇
  2004年   4篇
  2003年   8篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
排序方式: 共有184条查询结果,搜索用时 19 毫秒
31.
Thirty five bacterial isolates from diverse environmental sources such as contaminated food, nitrogen rich soil, activated sludges from pesticide and oil refineries effluent treatment plants were found to belong to Bacillus, Bordetella, Enterobacter, Proteus, and Pseudomonas sp. on the basis of 16S rRNA gene sequence analysis. Under dark fermentative conditions, maximum hydrogen (H2) yields (mol/mol of glucose added) were recorded to be 0.68 with Enterobacter aerogenes EGU16 followed by 0.63 with Bacillus cereus EGU43 and Bacillus thuringiensis EGU45. H2 constituted 63–69% of the total biogas evolved. Out of these 35 microbes, 18 isolates had the ability to produce polyhydroxybutyrate (PHB), which varied up to 500 mg/l of medium, equivalent to a yield of 66.6%. The highest PHB yield was recorded with B. cereus strain EGU3. Nine strains had high hydrolytic activities (zone of hydrolysis): lipase (34–38 mm) – Bacillus sphaericus strains EGU385, EGU399 and EGU542; protease (56–62 mm) – Bacillus sp. strains EGU444, EGU447 and EGU445; amylase (23 mm) – B. thuringiensis EGU378, marine bacterium strain EGU409 and Pseudomonas sp. strain EGU448. These strains with high hydrolytic activities had relatively low H2 producing abilities in the range of 0.26–0.42 mol/mol of glucose added and only B. thuringiensis strain EGU378 had the ability to produce PHB. This is the first report among the non-photosynthetic microbes, where the same organism(s) – B. cereus strain EGU43 and B. thuringiensis strain EGU45, have been shown to produce H2 – 0.63 mol/mol of glucose added and PHB – 420–435 mg/l medium.  相似文献   
32.
The aim of this study, was to determine the prevalence of some respiratory symptoms and possible diseases among taxi drivers and manual workers. This prospective study was performed on 165 Pakistani male drivers, (mean age: 34.5±7.8 years) and 165 Pakistani male manual workers not exposed to dust or fumes, without occupational exposure to driving employed in the Water and Electricity Department and recruited as controls (mean age: 34.6±7.6 years and mean height and weight 169.8±6.0 cm and 71.9±10.9 kg). The data on chronic respiratory symptoms showed that taxi drivers had higher prevalence of symptoms than manual workers, being significantly greater for asthma (RR=1.72; 95% CI=1.00–2.88,P=0.037); allergic rhinitis (RR=2.41; 95% CI=1.46–3.94,P=0.0006); dyspnea (RR=2.13; 95% CI=1.22–3.71,P=0.009); and nasal catarrh (RR=2.19; 95% CI=1.22–3.91,P=0.0106). Thirty percent of taxi drivers and 27% of manual workers were smokers, there was no significant differences in the prevalence of chronic respiratory symptoms between smokers and non-smokers. Lung function parameters in the taxi drivers were significantly lower than in manual workers group (P<0.0001) except PEF parameter. When comparing the measured mean values of lung function parameters in the drivers among smokers and nonsmokers, there was no significant differences between smokers and nonsmokers. Also, a comparison of ventilatory capacity of paired predicted values with measured normal values showed statistically significant differences between predicted and measured values for taxi drivers and manual workers for FVC, FEV1, FEF25–75 and PEF parameters except for FEV1/FVC test in manual workers. In conclusion, the results of the present study provide evidence regarding effects of such as carbon monoxide, nitrogen dioxide, sulfur dioxide and gases exposures on taxi drivers and long-term driving, which may be associated with the development of chronic respiratory symptoms and lung function impairment.  相似文献   
33.
A viable option for increasing nitrogen (N) use efficiency and mitigation of negative impacts of N on the environment is to capitalize on multi-element interactions through implementation of nutrient management programs that provide balanced nutrition. Numerous studies have demonstrated the immediate efficacy of this approach in the developing regions like China and India as well as developed countries in North America. Based on 241 site-years of experiments in these countries, the first-year N recovery efficiency (RE) for the conventional or check treatments averaged 21% while the balanced treatments averaged 54% RE, for an average increase of 33% in RE due to balanced nutrition. Effective policies to promote adoption are most likely those that enable site-specific approaches to nutrient management decisions rather than sweeping, nation-wide incentives supporting one nutrient over another. Local farmers, advisers and officials need to be empowered with tools and information to help them define necessary changes in practices to create more balanced nutrient management.  相似文献   
34.
Although it is conceivable that cancer preventive isothiocyanates (ITCs), a family of compounds in cruciferous vegetables, induce cell cycle arrest and apoptosis through a mechanism involving oxidative stress, our study shows that binding to cellular proteins correlates with their potencies of apoptosis induction. More recently, we showed that ITCs bind selectively to tubulins. The differential binding affinities toward tubulin among benzyl isothiocyanate, phenethyl isothiocyanate, and sulforaphane correlate well with their potencies of inducing tubulin conformation changes, microtubule depolymerization, and eventual cell cycle arrest and apoptosis in human lung cancer A549 cells. These results support that tubulin binding by ITCs is an early event for cell growth inhibition. Here we demonstrate that ITCs can selectively induce degradation of both α- and β-tubulins in a variety of human cancer cell lines in a dose- and time-dependent manner. The onset of degradation, a rapid and irreversible process, is initiated by tubulin aggregation, and the degradation is proteasome-dependent. Results indicate that the degradation is triggered by ITC binding to tubulin and is irrelevant to oxidative stress. This is the first report that tubulin, a stable and abundant cytoskeleton protein required for cell cycle progression, can be selectively degraded by a small molecule.Microtubules as a major cytoskeleton component in all eukaryotic cells play essential roles such as maintenance of cell polarity, intracellular traffic, organization, and cell motility (14). During cell division, the microtubule-formed mitotic spindle ensures the replicated chromosomes separate evenly at the end of the mitotic phase to the two daughter cells (1). It is because of its essential roles in cell growth that microtubules become a valid target for the development of anti-microtubule drugs against the rapidly growing cancer cells (2), as interference of microtubule dynamics arrests cell cycle progression and induces apoptosis (3). Therefore, microtubules have been considered one of the best targets to date for cancer chemotherapy (4).Isothiocyanates (ITCs)3 are among the best studied chemopreventive small molecules (5). The three most studied ITCs, including benzyl-ITC (BITC; abundant in garden cress), phenethyl-ITC (PEITC; in watercress), and sulforaphane (SFN; in broccoli sprouts), have been shown to induce apoptosis and cell cycle arrest (58). Although it is believed that oxidative stress plays a role in cell cycle arrest and apoptosis induced by ITCs (612), we found that binding to proteins is a predominant intracellular chemical reaction of ITCs, and their protein binding affinities correlate well with inhibition of cell proliferation and induction of apoptosis (13). Recently, we identified tubulin, the microtubule constituent, as an in vivo target of ITCs by two-dimensional gel electrophoresis and mass spectrometry (14). The growth inhibition of human non-small lung cancer A549 cells by ITCs followed the order of BITC > PEITC > SFN. The same order of potency was seen in their binding affinities toward tubulin, induction of its conformational changes, and inhibition of its polymerization. The study provides the first evidence of an in vivo ITC-tubulin binding adduct, indicating that direct modification of cysteines in tubulin by ITCs, rather than oxidative stress, may trigger cell cycle arrest and apoptosis.Here we report an unexpected novel finding that tubulin is selectively degraded in a variety of human cancer cells treated with ITCs. We provide evidence that the degradation is initiated by its binding with ITCs and mediated by the ubiquitin-proteasome pathway. Tubulin has long been viewed as a stable and abundant protein, and its levels in cells are tightly regulated (15). In the literature, the only studies on cellular tubulin level change are related to “the auto-regulation theory,” i.e. when microtubules collapse, the presence of a massive amount of tubulin monomers would selectively destabilize tubulin mRNA and subsequently decrease tubulin protein synthesis (1618). To our knowledge, there is no report on tubulin degradation as a result of treatment with any agents. Our studies provide strong evidence that supports tubulin as a target of ITCs for cell growth inhibition, pointing to a new mechanism for the anti-microtubule or anti-mitosis effects of ITCs through covalent binding to tubulin and presenting a platform to study protein stability by modification with small molecules.  相似文献   
35.
A 25-year-old previously asymptomatic pregnant woman at 36 weeks'' gestation was noticed to have repetitive monomorphic ventricular tachycardia. A dilated left ventricle with moderately reduced systolic function was found on echocardiographic examination. This is a very rare presentation of peripartum cardiomyopathy (PPCMP) presenting with repetitive monomorphic ventricular tachycardia.  相似文献   
36.
Mutations in Cu/Zn superoxide dismutase (SOD1) are linked to motor neuron death in familial amyotrophic lateral sclerosis (ALS) by an unclear mechanism, although misfolded SOD1 aggregates are commonly associated with disease. Proteomic analysis of the transgenic SOD1(G93A) ALS rat model revealed significant up-regulation of endoplasmic reticulum (ER)-resident protein-disulfide isomerase (PDI) family members in lumbar spinal cords. Expression of SOD1 mutants (mSOD1) led to an up-regulation of PDI in motor neuron-like NSC-34 cells but not other cell lines. Inhibition of PDI using bacitracin increased aggregate production, even in wild type SOD1 transfectants that do not readily form inclusions, suggesting PDI may protect SOD1 from aggregation. Moreover, PDI co-localized with intracellular aggregates of mSOD1 and bound to both wild type and mSOD1. SOD1 was also found in the microsomal fraction of cells despite being a predominantly cytosolic enzyme, confirming ER-Golgi-dependent secretion. In SOD1(G93A) mice, a significant up-regulation of unfolded protein response entities was also observed during disease, including caspase-12, -9, and -3 cleavage. Our findings therefore implicate unfolded protein response and ER stress-induced apoptosis in the patho-physiology of familial ALS. The possibility that PDI may be a therapeutic target to prevent SOD1 aggregation is also raised by this study.  相似文献   
37.
The exact positioning of the membrane in transmembrane (TM) proteins plays important functional roles. Yet, the structures of TM proteins in protein data bank (pdb) have no information about the explicit position of the membrane. Using a simple hydrophobic lipid-protein mismatch energy function and a flexible lipid/water boundary, the position of lipid bilayer for representative TM proteins in pdb have been annotated. A web server called MAPS (Membrane Annotation of Protein Structures; available at: http://www.boseinst.ernet.in/gautam/maps) has been set up that allows the user to interactively analyze membrane-protein orientations of any uploaded pdb structure with user-defined membrane flexibility parameters.  相似文献   
38.
Prednisone is often used for the treatment of autoimmune and inflammatory diseases but they suffer from variable therapeutic responses and significant adverse effects. Serum biological markers that are modulated by chronic corticosteroid use have not been identified. Myasthenia gravis is an autoimmune neuromuscular disorder caused by antibodies directed against proteins present at the post-synaptic surface of neuromuscular junction resulting in weakness. The patients with myasthenia gravis are primarily treated with prednisone. We analyzed the metabolomic profile of serum collected from patients prior to and after 12 weeks of prednisone treatment during a clinical trial. Our aim was to identify metabolites that may be treatment responsive and be evaluated in future studies as potential biomarkers of efficacy or adverse effects. Ultra-performance liquid chromatography coupled with electro-spray quadrupole time of flight mass spectrometry was used to obtain comparative metabolomic and lipidomic profile. Untargeted metabolic profiling of serum showed a clear distinction between pre- and post- treatment groups. Chronic prednisone treatment caused upregulation of membrane associated glycerophospholipids: phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, 1, 2-diacyl-sn glycerol 3 phosphate and 1-Acyl-sn-glycero-3-phosphocholine. Arachidonic acid (AA) and AA derived pro-inflammatory eicosanoids such as 18-carboxy dinor leukotriene B4 and 15 hydroxyeicosatetraenoic acids were reduced. Perturbations in amino acid, carbohydrate, vitamin and lipid metabolism were observed. Chronic prednisone treatment caused increase in membrane associated glycerophospholipids, which may be associated with certain adverse effects. Decrease of AA and AA derived pro-inflammatory eicosanoids demonstrate that immunosuppression by corticosteroid is via suppression of pro-inflammatory pathways. The study identified metabolomic fingerprints that can now be validated as prednisone responsive biomarkers for the improvement in diagnostic accuracy and prediction of therapeutic outcome.  相似文献   
39.
Prolonged elevations of plasma aldosterone levels are associated with renal pathogenesis. We hypothesized that renal distress could be imposed by an augmented aldosterone-induced protein turnover challenging cellular protein degradation systems of the renal tubular cells. Cellular accumulation of specific protein aggregates in rat kidneys was assessed after 7 days of aldosterone administration. Aldosterone induced intracellular accumulation of 60 s ribosomal protein L22 in protein aggregates, specifically in the distal convoluted tubules. The mineralocorticoid receptor inhibitor spironolactone abolished aldosterone-induced accumulation of these aggregates. The aldosterone-induced protein aggregates also contained proteasome 20 s subunits. The partial de-ubiquitinase ataxin-3 was not localized to the distal renal tubule protein aggregates, and the aggregates only modestly colocalized with aggresome transfer proteins dynactin p62 and histone deacetylase 6. Intracellular protein aggregation in distal renal tubules did not lead to development of classical juxta-nuclear aggresomes or to autophagosome formation. Finally, aldosterone treatment induced foci in renal cortex of epithelial vimentin expression and a loss of E-cadherin expression, as signs of cellular stress. The cellular changes occurred within high, but physiological aldosterone concentrations. We conclude that aldosterone induces protein accumulation in distal renal tubules; these aggregates are not cleared by autophagy that may lead to early renal tubular damage.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号