首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   17篇
  国内免费   3篇
  2023年   2篇
  2021年   4篇
  2020年   3篇
  2017年   5篇
  2016年   7篇
  2015年   10篇
  2014年   11篇
  2013年   16篇
  2012年   8篇
  2011年   14篇
  2010年   11篇
  2009年   8篇
  2008年   9篇
  2007年   5篇
  2006年   3篇
  2005年   9篇
  2004年   9篇
  2003年   11篇
  2002年   7篇
  2001年   8篇
  2000年   7篇
  1999年   11篇
  1998年   6篇
  1997年   9篇
  1996年   4篇
  1995年   2篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   2篇
  1988年   12篇
  1987年   12篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1979年   2篇
  1978年   2篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
81.
An overview of models of stomatal conductance at the leaf level   总被引:4,自引:0,他引:4  
Stomata play a key role in plant adaptation to changing environmental conditions as they control both water losses and CO2 uptake. Particularly, in the context of global change, simulations of the consequences of drought on crop plants are needed to design more efficient and water‐saving cropping systems. However, most of the models of stomatal conductance (gs) developed at the leaf level link gs to environmental factors or net photosynthesis (Anet), but do not include satisfactorily the effects of drought, impairing our capacity to simulate plant functioning in conditions of limited water supply. The objective of this review was to draw an up‐to‐date picture of the gs models, from the empirical to the process‐based ones, along with their mechanistic or deterministic bases. It focuses on models capable to account for multiple environmental influences with emphasis on drought conditions. We examine how models that have been proposed for well‐watered conditions can be combined with those specifically designed to deal with drought conditions. Ideas for future improvements of gs models are discussed: the issue of co‐regulation of gs and Anet; the roles of CO2, absissic acid and H2O2; and finally, how to better address the new challenges arising from the issue of global change.  相似文献   
82.

Background  

The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms.  相似文献   
83.
84.
85.
The interactions of actin with neutral lipid films made from DLPC, and with positively charged films built from DLPC and stearylamine (SA), have been characterized by the monolayer technique. Injection of actin underneath an expanded lipid film produces an increase in the surface pressure that is consistent with a penetration of the lipid molecules by actin. This adsorption of actin to the lipid is more pronounced either with positively charged films or with Mg(2+) present in the sub-phase, suggesting that the mechanism involves an electrostatic attraction. During compression, the actin molecules are squeezed out into the sub-phase, carrying along some lipid molecules; this suggests a strong affinity of the lipids for actin. An analysis of the dilational modulus shows that when actin is found as monomers at the interface, the mixed actin-lipid film undergoes three phase changes upon compression. On the other hand, when actin is polymerized at the interface, the actin and the lipid form a rigid film for which the compressibility is mostly dominated by actin.  相似文献   
86.
Mutations in PKD1 and PKD2, the genes that encode polycystin-1 and polycystin-2 respectively, account for almost all cases of autosomal dominant polycystic kidney disease. Although the polycystins are believed to interact in vivo, the two proteins often display dissimilar patterns and gradients of expression during development. In an effort to understand this apparent discrepancy, we investigated how changes in polycystin-2 expression can affect the subcellular localization of polycystin-1. We show that, when polycystin-1 is expressed alone in a PKD2 null cell line, it localizes to the cell surface, as well as to the endoplasmic reticulum. When co-expressed with polycystin-2, however, polycystin-1 is not seen at the cell surface and co-localizes completely with polycystin-2 in the endoplasmic reticulum. The localization of a polycystin-1 fusion protein was similarly affected by changes in its level of expression relative to that of polycystin-2. This phenomenon was observed in populations as well as in individual COS-7 cells. Our data suggest that the localization of polycystin-1 can be regulated via the relative expression level of polycystin-2 in mammalian cells. This mechanism may help to explain the divergent patterns and levels of expression observed for the polycystins, and may provide clues as to how the function of these two proteins are regulated during development.  相似文献   
87.
Thiazolidinediones are used to treat type 2 diabetes mellitus because they decrease plasma glucose, insulin, triglyceride, and fatty acid levels. Thiazolidinediones are agonists for peroxisome proliferator-activated receptor gamma, a nuclear receptor that is highly expressed in fat tissue. We identify glyceroneogenesis as a target of thiazolidinediones in cultured adipocytes and fat tissues of Wistar rats. The activation of glyceroneogenesis by thiazolidinediones occurs mainly in visceral fat, the same fat depot that is specifically implicated in the progression of obesity to type 2 diabetes. The increase in glyceroneogenesis is a result of the induction of its key enzyme, phosphoenolpyruvate carboxykinase, whose gene expression is peroxisome proliferator-activated receptor gamma-dependent in adipocytes. The main role of this metabolic pathway is to allow the re-esterification of fatty acids via a futile cycle in adipocytes, thus lowering fatty acid release into the plasma. The importance of such a fatty acid re-esterification process in the control of lipid homeostasis is highlighted by the existence of a second thiazolidinedione-induced pathway involving glycerol kinase. We show that glyceroneogenesis accounts for at least 75% of the whole thiazolidinedione effect. Because elevated plasma fatty acids promote insulin resistance, these results suggest that the glyceroneogenesis-dependent fatty acid-lowering effect of thiazolidinediones could be an essential aspect of the antidiabetic action of these drugs.  相似文献   
88.
The phospholipase D (PLD) from Streptomyces chromofuscus belongs to the superfamily of PLDs. All the enzymes included in this superfamily are able to catalyze both hydrolysis and transphosphatidylation activities. However, S. chromofuscus PLD is calcium dependent and is often described as an enzyme with weak transphosphatidylation activity. S. chromofuscus PLD-catalyzed hydrolysis of phospholipids in aqueous medium leads to the formation of phosphatidic acid. Previous studies have shown that phosphatidic acid-calcium complexes are activators for the hydrolysis activity of this bacterial PLD. In this work, we investigated the influence of diacylglycerols (naturally occurring alcohols) as candidates for the transphosphatidylation reaction. Our results indicate that the transphosphatidylation reaction may occur using diacylglycerols as a substrate and that the phosphatidylalcohol produced can be directly hydrolyzed by PLD. We also focused on the surface pressure dependency of PLD-catalyzed hydrolysis of phospholipids. These experiments provided new information about PLD activity at a water-lipid interface. Our findings showed that classical phospholipid hydrolysis is influenced by surface pressure. In contrast, phosphatidylalcohol hydrolysis was found to be independent of surface pressure. This latter result was thought to be related to headgroup hydrophobicity. This work also highlights the physiological significance of phosphatidylalcohol production for bacterial infection of eukaryotic cells.  相似文献   
89.
迁徙水鸟保护对生物多样性保护具有重要意义。开展水鸟种群数量和幼鸟比例监测,对科学评估其种群变化趋势、制定长期保护策略具有重要价值。长江中下游湿地是东亚-澳大利西亚迁徙路线上重要的水鸟越冬区之一。本研究采用野外同步调查等方法对该区域87个湿地的亟需保护和具有代表性的10种大型越冬水鸟,其中雁形目6种,分别是鸿雁Anser cygnoides、豆雁A.fabalis、灰雁A.grus、白额雁A.albifrons、小白额雁A.erythropus和小天鹅Cygnus columbianus;鹤形目4种,分别是白鹤Leucogeranus leucogeranus、白枕鹤Antigone vipio、灰鹤Grus grus和白头鹤G.monacha,进行了长期监测(2003—2019年冬季),并结合相关文献,评估其种群变化趋势、幼鸟比例和死亡率。研究结果如下:(1)2005—2019年3种水鸟(豆雁、灰雁和灰鹤)的种群数量呈上升趋势,7种水鸟(鸿雁、白额雁、小白额雁、小天鹅、白鹤、白枕鹤和白头鹤)种群数量呈下降趋势;(2)种群趋势下降组(N=7)和上升组(N=3)的幼鸟比例均值在2016—2...  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号