首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8643篇
  免费   830篇
  国内免费   90篇
  2022年   36篇
  2021年   177篇
  2020年   108篇
  2019年   136篇
  2018年   150篇
  2017年   139篇
  2016年   248篇
  2015年   446篇
  2014年   425篇
  2013年   526篇
  2012年   684篇
  2011年   627篇
  2010年   382篇
  2009年   345篇
  2008年   463篇
  2007年   416篇
  2006年   428篇
  2005年   374篇
  2004年   328篇
  2003年   306篇
  2002年   254篇
  2001年   237篇
  2000年   229篇
  1999年   183篇
  1998年   81篇
  1997年   60篇
  1996年   69篇
  1995年   57篇
  1994年   46篇
  1993年   59篇
  1992年   124篇
  1991年   95篇
  1990年   100篇
  1989年   108篇
  1988年   77篇
  1987年   83篇
  1986年   88篇
  1985年   90篇
  1984年   61篇
  1983年   62篇
  1982年   50篇
  1981年   49篇
  1980年   47篇
  1979年   76篇
  1978年   60篇
  1977年   45篇
  1976年   47篇
  1975年   37篇
  1974年   43篇
  1973年   41篇
排序方式: 共有9563条查询结果,搜索用时 391 毫秒
991.
Acetylcholinesterase (AChE) is anchored onto cell membranes by the transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric globular form that is prominently expressed in vertebrate brain. In parallel, the PRiMA-linked tetrameric butyrylcholinesterase (BChE) is also found in the brain. A single type of AChE-BChE hybrid tetramer was formed in cell cultures by co-transfection of cDNAs encoding AChET and BChET with proline-rich attachment domain-containing proteins, PRiMA I, PRiMA II, or a fragment of ColQ having a C-terminal GPI addition signal (QN-GPI). Using AChE and BChE mutants, we showed that AChE-BChE hybrids linked with PRiMA or QN-GPI always consist of AChET and BChET homodimers. The dimer formation of AChET and BChET depends on the catalytic domains, and the assembly of tetramers with a proline-rich attachment domain-containing protein requires the presence of C-terminal “t-peptides” in cholinesterase subunits. Our results indicate that PRiMA- or ColQ-linked cholinesterase tetramers are assembled from AChET or BChET homodimers. Moreover, the PRiMA-linked AChE-BChE hybrids occur naturally in chicken brain, and their expression increases during development, suggesting that they might play a role in cholinergic neurotransmission.  相似文献   
992.
Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain–CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3''s lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP–CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP–CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.CENTROMERES are essential for chromosome inheritance, because they nucleate kinetochores, the protein complexes on eukaryotic chromosomes that attach to spindle microtubules. Despite the essential requirement for centromeres in chromosome segregation, their DNA sequences and the sequences of kinetochore proteins are highly variable. Kinetochores in Saccharomyces cerevisiae and related budding yeasts assemble on small, unique centromere DNAs (125 bp in S. cerevisiae) (Meraldi et al. 2006). Centromere DNAs in the fission yeast Schizosaccharomyces pombe are larger, consisting of a central core sequence of 4–5 kb, which binds kinetochore proteins, flanked by large inverted repeats whose heterochromatic nature is important for centromere function (the total size of the S. pombe centromere DNA is 35–110 kb). At the other extreme from small yeast centromeres are holocentric organisms, such as Caenorhabditis elegans, in which kinetochore proteins bind along the entire length of mitotic chromosomes (Dernburg 2001). Most plants and animals have extremely large centromere DNA tracts consisting of megabases of simple tandem repeats. The repeat sequence evolves extremely rapidly, and only a small fraction of the repeat array is likely to be bound by kinetochore proteins. Furthermore, kinetochores can be nucleated by noncentromeric DNA sequences in plant and animal cells (Amor and Choo 2002; Nagaki et al. 2004; Nasuda et al. 2005; Heun et al. 2006; Wade et al. 2009). Despite these findings, the maintenance of massive centromere repeat arrays in both animal and plant taxa suggests that repeats are a central feature of centromere biology in these organisms.Although centromere DNAs are extremely diverse, all eukaryote kinetochores contain the centromere-specific histone H3 variant CENH3 (originally described as CENP-A in human) (Henikoff and Dalal 2005; Black and Bassett 2008). CENH3 replaces conventional H3 specifically in a subset of centromere nucleosomes. It is essential for kinetochore function in all eukaryotes where this requirement has been tested. Conventional histones are among the most conserved proteins in eukaryote genomes. In contrast, CENH3 is rapidly evolving. The C-terminal histone-fold domain, which complexes with other histones to form the globular nucleosome core, can be aligned with conventional H3''s but evolves rapidly and shows signatures of adaptive evolution in some residues (Malik and Henikoff 2001; Talbert et al. 2002; Cooper and Henikoff 2004). The N-terminal tail domain of conventional histone H3 protrudes from the nucleosome core and is not resolved in the structure solved by X-ray crystallography (Luger et al. 1997). In CENH3, the tail domain evolves so rapidly that its sequence can barely be aligned between closely related species.Experiments in yeast and in animals have delineated functionally important regions within CENH3. S. cerevisiae kinetochores contain only a single CENH3/Cse4p nucleosome (Furuyama and Biggins 2007). In S. cerevisiae Cse4p, amino acid residues required for normal function are distributed throughout the histone-fold domain (Keith et al. 1999). The N-terminal tail of Cse4p contains an essential region termed the END domain, but overexpression of a Cse4p lacking the tail altogether can rescue a cse4 deletion mutant (Chen et al. 2000; Morey et al. 2004). In Drosophila melanogaster cells, CENH3/Cid from the distantly related D. bipectinata did not localize to kinetochores unless a specific region of the histone-fold domain, loop 1, was swapped with the corresponding region from D. melanogaster CENH3/Cid (Vermaak et al. 2002). In human, the histone-fold domain is important for centromere targeting (Sullivan et al. 1994). The functionally important region within the histone-fold domain was further defined by inserting loop 1 and the α-2 helix from CENH3/CENP-A (termed the CENP-A targeting domain, or CATD) into conventional H3 (Black et al. 2004). H3 containing the CATD acquires several functions of CENP-A when expressed in human cells. It localizes to kinetochores, binds the kinetochore protein CENP-N, has a rigid secondary structure when assembled into nucleosomes, and can restore normal chromosome segregation in cells depleted for CENP-A using RNA interference (RNAi) (Black et al. 2004, 2007a,b; Carroll et al. 2009).Despite these extensive studies, questions about structure–function relationships within CENH3 remain. CENH3 function may differ between small yeast centromeres and the large tandem repeat centromeres of animals and plants, particularly because larger centromere DNAs are likely to contain many more CENH3 nucleosomes and may require a higher level of organization. Experiments in D. melanogaster and in human cells have used RNAi to downregulate the endogenous protein, and a conditional knockout has been made in chicken DT-40 cells (Blower and Karpen 2001; Goshima et al. 2003; Regnier et al. 2005; Black et al. 2007b). These experiments are challenging because CENH3 is very stable. If preexisting CENH3 is partitioned equally between duplicated sister centromeres, its amount will be approximately halved at each cell division. Therefore the protein may persist for many cell divisions after induction of RNAi, as shown by Western blots indicating that ∼10% of endogenous CENH3 remains in human cells subjected to two rounds of RNAi (Black et al. 2007b).We have chosen to study CENH3 in the model plant A. thaliana, which combines facile genetics and transgenesis with centromere DNA structure that is similar to most plants and animals (megabases of tandem repeats with a repeating unit of 178 bp) (Murata et al. 1994; Copenhaver et al. 1999). Although Drosophila and mouse CENH3 knockout mutants have been characterized (Howman et al. 2000; Blower et al. 2006), a large-scale structure–function analysis of CENH3 has not been attempted in these organisms. A cenh3 null mutant in A. thaliana allows us to completely replace the endogenous protein with transgenic variants (Ravi and Chan 2010). Here we report four major conclusions regarding CENH3 function in A. thaliana: (1) CENH3 function requires an N-terminal histone tail domain, although either the CENH3 tail or the H3 tail can support mitotic chromosome segregation. (2) Inserting the CENP-A targeting domain of CENH3 into H3 does not confer CENH3 function. (3) Complementation of cenh3 by heterologous CENH3 requires that the species of origin be closely related to A. thaliana. (4) Localization of a heterologous CENH3 protein to kinetochores in the presence of native CENH3 does not necessarily indicate that it can complement a cenh3 mutant. Overall, our results indicate that requirements for CENH3 function in A. thaliana are more stringent that those obtained in human cells. They underscore the usefulness of comparative studies of centromere function using genetically tractable experimental organisms.  相似文献   
993.
994.
The synthesis of proteoglycans involves steps that regulate both protein and glycosaminoglycan (GAG) synthesis, but it is unclear whether these two pathways are regulated by the same or different signaling pathways. We therefore investigated signaling pathways involved in platelet-derived growth factor (PDGF)-mediated increases in versican core protein and GAG chain synthesis in arterial smooth muscle cells (ASMCs). PDGF treatment of ASMCs resulted in increased versican core protein synthesis and elongation of GAG chains attached to the versican core protein. The effects of PDGF on versican mRNA were blocked by inhibiting either protein kinase C (PKC) or the ERK pathways, whereas the GAG elongation effect of PDGF was blocked by PKC inhibition but not by ERK inhibition. Interestingly, blocking protein synthesis in the presence of cycloheximide abolished the PDGF effect, but not in the presence of xyloside, indicating that GAG synthesis that results from PKC activation is independent from de novo protein synthesis. PDGF also stimulated an increase in the chondroitin-6-sulfate to chondroitin-4-sulfate ratio of GAG chains on versican, and this effect was blocked by PKC inhibitors. These data show that PKC activation is sufficient to cause GAG chain elongation, but both PKC and ERK activation are required for versican mRNA core protein expression. These results indicate that different signaling pathways control different aspects of PDGF-stimulated versican biosynthesis by ASMCs. These data will be useful in designing strategies to interfere with the synthesis of this proteoglycan in various disease states.  相似文献   
995.
IgG1 antibodies produced in Chinese hamster ovary (CHO) cells are heavily α1,6‐fucosylated, a modification that reduces antibody‐dependent cellular cytotoxicity (ADCC) and can inhibit therapeutic antibody function in vivo. Addition of fucose is catalyzed by Fut8, a α1,6‐fucosyltransferase. FUT8?/? CHO cell lines produce completely nonfucosylated antibodies, but the difficulty of recapitulating the knockout in protein‐production cell lines has prevented the widespread adoption of FUT8?/? cells as hosts for antibody production. We have created zinc‐finger nucleases (ZFNs) that cleave the FUT8 gene in a region encoding the catalytic core of the enzyme, allowing the functional disruption of FUT8 in any CHO cell line. These reagents produce FUT8?/? CHO cells in 3 weeks at a frequency of 5% in the absence of any selection. Alternately, populations of ZFN‐treated cells can be directly selected to give FUT8?/? cell pools in as few as 3 days. To demonstrate the utility of this method in bioprocess, FUT8 was disrupted in a CHO cell line used for stable protein production. ZFN‐derived FUT8?/? cell lines were as transfectable as wild‐type, had similar or better growth profiles, and produced equivalent amounts of antibody during transient transfection. Antibodies made in these lines completely lacked core fucosylation but had an otherwise normal glycosylation pattern. Cell lines stably expressing a model antibody were made from wild‐type and ZFN‐generated FUT8?/? cells. Clones from both lines had equivalent titer, specific productivity distributions, and integrated viable cell counts. Antibody titer in the best ZFN‐generated FUT8?/? cell lines was fourfold higher than in the best‐producing clones of FUT8?/? cells made by standard homologous recombination in a different CHO subtype. These data demonstrate the straightforward, ZFN‐mediated transfer of the Fut8? phenotype to a production CHO cell line without adverse phenotypic effects. This process will speed the production of highly active, completely nonfucosylated therapeutic antibodies. Biotechnol. Bioeng. 2010;106: 774–783. © 2010 Wiley Periodicals, Inc.  相似文献   
996.
An efficient protein digestion in proteomic analysis requires the stabilization of proteases such as trypsin. In the present work, trypsin was stabilized in the form of enzyme coating on electrospun polymer nanofibers (EC‐TR), which crosslinks additional trypsin molecules onto covalently attached trypsin (CA‐TR). EC‐TR showed better stability than CA‐TR in rigorous conditions, such as at high temperatures of 40 and 50°C, in the presence of organic co‐solvents, and at various pH's. For example, the half‐lives of CA‐TR and EC‐TR were 1.42 and 231 h at 40°C, respectively. The improved stability of EC‐TR can be explained by covalent linkages on the surface of trypsin molecules, which effectively inhibits the denaturation, autolysis, and leaching of trypsin. The protein digestion was performed at 40°C by using both CA‐TR and EC‐TR in digesting a model protein, enolase. EC‐TR showed better performance and stability than CA‐TR by maintaining good performance of enolase digestion under recycled uses for a period of 1 week. In the same condition, CA‐TR showed poor performance from the beginning and could not be used for digestion at all after a few usages. The enzyme coating approach is anticipated to be successfully employed not only for protein digestion in proteomic analysis but also for various other fields where the poor enzyme stability presently hampers the practical applications of enzymes. Biotechnol. Bioeng. 2010;107: 917–923. © 2010 Wiley Periodicals, Inc.  相似文献   
997.
Mammalian cells with multi‐gene knockouts could be of considerable utility in research, drug discovery, and cell‐based therapeutics. However, existing methods for targeted gene deletion require sequential rounds of homologous recombination and drug selection to isolate rare desired events—a process sufficiently laborious to limit application to individual loci. Here we present a solution to this problem. Firstly, we report the development of zinc‐finger nucleases (ZFNs) targeted to cleave three independent genes with known null phenotypes. Mammalian cells exposed to each ZFN pair in turn resulted in the generation of cell lines harboring single, double, and triple gene knockouts, that is, the successful disruption of two, four, and six alleles. All three biallelic knockout events were obtained at frequencies of >1% without the use of selection, displayed the expected knockout phenotype(s), and harbored DNA mutations centered at the ZFN binding sites. These data demonstrate the utility of ZFNs in multi‐locus genome engineering. Biotechnol. Bioeng. 2010; 106: 97–105. © 2009 Wiley Periodicals, Inc.  相似文献   
998.
Protein phosphatase 2A (PP2A), in its activated form as a phosphatase, is a tumour suppressor. However, when PP2A is phosphorylated at the tyrosine residue (pY307), it loses its phosphatase activity and becomes inactivated. In our previous study, we found a higher expression of pY307-PP2A in HER-2/neu positive breast tumour samples and significantly correlated to tumour progression, and in this context, it could function as a proto-oncogene. The above and subsequent findings led us to postulate that the critical role of PP2A in maintaining the balance between cell survival and cell death may be linked to its phosphorylation status at its Y307 residue. Hence, we further investigated the effects of knocking down the PP2A catalytic subunit which contains the Y307 amino acid residue in two HER-2/neu positive breast cancer cell lines, BT474 and SKBR3. We showed that this causes the silenced HER-2/neu breast cancer cells to undergo apoptosis and furthermore, that such apoptosis is mediated by p38 MAPK-caspase 3/PARP activation. Understanding the role of PP2A in HER2/neu positive cells might thus provide insight into new targets for breast cancer therapy.  相似文献   
999.
Chan CS  Chang L  Winstone TM  Turner RJ 《FEBS letters》2010,584(22):4553-4558
Redox enzyme substrates of the twin-arginine translocation (Tat) system contain a RR-motif in their leader peptide and require the assistance of chaperones, redox enzyme maturation proteins (REMPs). Here various regions of the RR-containing oxidoreductase subunit (leader peptide, full preprotein with and without a leader cleavage site, mature protein) were assayed for interaction with their REMPs. All REMPs bound their preprotein substrates independent of the cleavage site. Some showed binding to either the leader or mature region, whereas in one case only the preprotein bound its REMP. The absence of Tat also influenced the amount of chaperone-substrate interaction.

Structured summary

MINT-8047497: FdhE (uniprotkb:P13024) and FdoG (uniprotkb:P32176) physically interact (MI:0915) by two hybrid (MI:0018)MINT-8046441: HybO (uniprotkb:P69741) and HybE (uniprotkb:P0AAN1) physically interact (MI:0915) by two hybrid (MI:0018)MINT-8046375: DmsA (uniprotkb:P18775) and DmsD (uniprotkb:P69853) physically interact (MI:0915) by two hybrid (MI:0018)MINT-8046425: TorA (uniprotkb:P33225) and TorD (uniprotkb:P36662) physically interact (MI:0915) by two hybrid (MI:0018)MINT-8046393: NarJ (uniprotkb:P0AF26) and NarG (uniprotkb:P09152) physically interact (MI:0915) by two hybrid (MI:0018)MINT-8046409: NapD (uniprotkb:P0A9I5) and NapA (uniprotkb:P33937) physically interact (MI:0915) by two hybrid (MI:0018)  相似文献   
1000.
Several hypotheses have been developed to explain what benefits a donor may gain from sharing food with another individual, with nutritional gain assumed to be the sole benefit for the beggar. Recently, it has been proposed that begging behaviour serves a social function in non-human primates. In this study, the nutritional-gain assumption was again challenged based on observations on a captive group of Sichuan snub-nosed monkeys (Rhinopithecus roxellana), or golden snub-nosed monkeys. The major findings from this study are that (1) beggars sometimes left their own branches or passed by available branches to beg for similar food from other individuals, (2) beggars occasionally ignored branches that were acquired by begging and (3) food begging occurred more frequently in the all-male unit after the social rank had changed between 2 individuals in this unit. Overall, these preliminary findings suggest that some begging behaviours in captive golden snub-nosed monkeys were not driven by nutritional gain only; instead, we propose that these begging behaviours could be interpreted as attempts at deriving social benefits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号