首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   5篇
  2021年   1篇
  2017年   4篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1986年   1篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1969年   1篇
排序方式: 共有69条查询结果,搜索用时 312 毫秒
11.
12.
13.
14.
Pacific salmon (Oncorhynchus spp.) disturb sediments and fertilize streams with marine-derived nutrients during their annual spawning runs, leading researchers to classify these fish as ecosystem engineers and providers of resource subsidies. While these processes strongly influence the structure and function of salmon streams, the magnitude of salmon influence varies widely across studies. Here, we use meta-analysis to evaluate potential sources of variability among studies in stream ecosystem responses to salmon. Results obtained from 37 publications that collectively included 79 streams revealed positive, but highly inconsistent, overall effects of salmon on dissolved nutrients, sediment biofilm, macroinvertebrates, resident fish, and isotopic enrichment. Variation in these response variables was commonly influenced by salmon biomass, stream discharge, sediment size, and whether studies used artificial carcass treatments or observed a natural spawning run. Dissolved nutrients were positively related to salmon biomass per unit discharge, and the slope of the relationship for natural runs was five to ten times higher than for carcass additions. Mean effects on ammonium and phosphorus were also greater for natural runs than carcass additions, an effect attributable to excretion by live salmon. In contrast, we observed larger positive effects on benthic macroinvertebrates for carcass additions than for natural runs, likely because disturbance by live salmon was absent. Furthermore, benthic macroinvertebrates and biofilm associated with small sediments (<32 mm) displayed a negative response to salmon while those associated with large sediments (>32 mm) showed a positive response. This comprehensive analysis is the first to quantitatively identify environmental and methodological variables that influence the observed effects of salmon. Identifying sources of variation in salmon–stream interactions is a critical step toward understanding why engineering and subsidy effects vary so dramatically over space and time, and toward developing management strategies that will preserve the ecological integrity of salmon streams. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
15.
A total of 44 accessions of Brachiaria decumbens were analysed for chromosome count and meiotic behaviour in order to identify potential progenitors for crosses. Among them, 15 accessions presented 2n = 18; 27 accessions, 2n = 36; and 2 accessions, 2n = 45 chromosomes. Among the diploid accessions, the rate of meiotic abnormalities was low, ranging from 0.82% to 7.93%. In the 27 tetraploid accessions, the rate of meiotic abnormalities ranged from 18.41% to 65.83%. The most common meiotic abnormalities were related to irregular chromosome segregation, but chromosome stickiness and abnormal cytokinesis were observed in low frequency. All abnormalities can compromise pollen viability by generating unbalanced gametes. Based on the chromosome number and meiotic stability, the present study indicates the apomictic tetraploid accessions that can act as male genitor to produce interspecific hybrids with B. ruziziensis or intraspecific hybrids with recently artificially tetraploidized accessions.  相似文献   
16.
The mechanism of wood development records in varying degree the effects of both external and internal factors that are operating at the time of development. As a result, fossil woods spanning the last 370 million years represent a unique palaeo-environmental data-store. Data concerning external factors that can be reclaimed consist of: presence or absence of growth rings; ring widths; relative proportions of earlywood and latewood and the nature of the transition between them; “false” and “frost” rings and evidence of damage by animals or fire; occurrence of reaction wood. These effects have to be seen against a background of the influences of the internal factors. The development of wood involves the action of plant growth regulators. The production of an entire season’s growth of wood depends on a supply of photosynthate, partly stored from the previous year, and the remainder directly from photosynthesis during the current one. In any population of trees of the same species there will be genetic variation which will lead to differences in the wood formed by the individual trees even if they have all grown in a largely similar environment. However the external factors exert a much greater influence than the internal ones. Our earliest fossil woods (Upper Devonian) show either seasonless growth patterns or, if weak rings are perceptible, then the increments are extensive. This is consistent with the palaeo-equatorial position of all recorded Devonian woods. In the Carboniferous a few sites (marginal in the tropical belt?) show subdued (weak) growth rings. By the time of the Gondwana glaciation strong rings are shown in high southern latitudes, but most surprisingly there are sizeable increments well inside the palaeoantarctic circle. This phenomenon persists into the Mesozoic where lack of growth rings shows consistency with positions within the palaeo-equatorial latitudes. However occurrence of Cretaceous high latitude wood growth demonstrates that given an adequate ambient temperature, forest growth was possible close to both poles. It is shown that this is consistent with the total energy flux known to occur now in high latitudes.  相似文献   
17.
László K 《动物学报》2006,52(6):1125-1132
信息素是生物体向外释放的化学物质,在细胞及生物体中具有种内信息传递的生理学功能。信息素这一类分子广泛分布于系统发生史中,它们的特异活性在单细胞生物、昆虫以及脊椎动物中均有报道。脊椎动物中信息素的信号传输已被证实是一嗅觉依赖过程,7TM-受体被认为是信号传输过程中的信号转换器。在低等单细胞生物(例如:来可夫游仆虫)的细胞膜上存在有信息素异构体,作为信息素分子的有效结合位点而行使其功能。本研究主要探讨单细胞的信息素(Er-1和Er-2)的基础细胞生理学作用是仅限于产生该信息素的物种,还是对其它的原生动物(例如:四膜虫)或对系统发育中分类地位较高的细胞(例如:MRC5成纤维细胞或J774巨噬细胞)均具有调节活性。研究结果表明,游仆虫的两种信息素对梨形四膜虫GL的生长调节有显著不同的作用:当信息素浓度为10-11M时,Er-1具有正调控作用,而Er-2具有抑制剂的作用。这两种配体的趋化作用也有很不同:Er-1具有一种广范的化学排斥特性,而Er-2具有一个双峰的化学吸引剂的性质。计算机检测发现,与Er-2的作用不同,Er-1可略微降低被测细胞的游动速率。趋化现象的选择特性表明Er-2信息素的受体有一种“短期”的特性;而Er-1是不能选择任何亚种群的,这也支持了我们先前的研究数据,即这两种信息素在四膜虫GL内产生两种不同的信号。四膜虫对信息素特异性的反应表明四膜虫能辨别非常近似但带有微小差异的配体(如Er-1和Er-2的电荷差异)。  相似文献   
18.
The molecular mechanisms by which plants sense their micronutrient status, and adapt to their environment in order to ensure a sufficient micronutrient supply, are poorly understood. Zinc is an essential micronutrient for all living organisms. when facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation were recently identified. in this mini-review, we highlight recent progress in understanding the adaptation to zinc deficiency in plants and discuss the future challenges to fully unravel its molecular basis.Key words: adaptation, zinc deficiency, biofortification, molecular regulators, plant nutritionIn an increasingly populated world, agricultural production is an essential element of social development. Agriculture is the primary source of all nutrients required for human life, and nutrient sufficiency is the basis for good health and welfare of the human population.1 Soils with zinc deficiency are widespread in the world, affecting large areas of cultivated soils in India, Turkey, China, Brazil and Australia,2,3 making zinc the most common crop micronutrient deficiency.4 In addition, risk of inadequate zinc diet and zinc malnutrition are estimated to affect one-third of the global human population, i.e., around two billion people.5 Most affected are people living in developing countries, where diets are rich in cereal-based foods. Cereal grains are rich in phytate, which is a potent anti-nutrient, limiting micronutrient bioavailability.6 Zinc deficiency in crop production can be easily ameliorated through zinc fertilization, making agronomic biofortification an important strategy,3 however in the poorer regions, the required infrastructure to provide a reliable supply of zinc fertilizers of sufficient quality, is often not available. In those situations, biofortified crops, in which the zinc status of crops is genetically improved by selective breeding or via biotechnology, offer a rural-based intervention that will more likely reach the population.7 Different traits can be targeted to developing such improved crops, such as plant zinc deficiency tolerance, zinc use efficiency and the accumulation of zinc in edible parts. However, insufficient knowledge on the molecular mechanisms and the regulation of the zinc homeostasis network in plants is a serious bottleneck when pursuing zinc biofortification.  相似文献   
19.
The polysaccharide chains of enterobacterial common antigen (ECA) consist of linear trisaccharide repeat units with the structure -->3)- alpha-d-Fuc4NAc-(1-->4)-beta-d-ManNAcA-(1--> 4)-alpha-d-GlcNAc-(1-->, where Fuc4NAc is 4-acetamido-4, 6-dideoxy-d-galactose, ManNAcA is N - acetyl-d- mannosaminuronic acid, and GlcNAc is N -acetyl-d-glucosamine. The major form of ECA (ECAPG) consists of polysaccharide chains that are believed to be covalently linked to diacylglycerol through phosphodiester linkage; the phospholipid moiety functions to anchor molecules in the outer membrane. The ECA trisaccharide repeat unit is assembled as a polyisoprenyl-linked intermediate which has been tentatively identified as Fuc4NAc-ManNAcA-GlcNAc- pyrophosphorylundecaprenol (lipid III). Subsequent chain-elongation presumably occurs by a block-polymerization mechanism. However, the identity of the polyisoprenoid carrier-lipid has not been established. Accordingly, the current studies were conducted in an effort to structurally characterize the polyisoprenyl lipid-carrier involved in ECA synthesis. Isolation and characterization of the lipid carrier was facilitated by the accumulation of a ManNAcA-GlcNAc- pyrophosphorylpolyisoprenyl lipid (lipid II) in mutants of Salmonella typhimurium defective in the synthesis of TDP-Fuc4NAc, the donor of Fuc4NAc residues for ECA synthesis. Analyses of lipid II preparations by fast atom bombardment tandem mass spectroscopy (FAB-MS/MS) resulted in the identification of the lipid-carrier as the 55-carbon polyisoprenyl alcohol, undecaprenol. These analyses also resulted in the identification of a novel glycolipid which copurified with lipid II. FAB-MS/MS analyses of this glycolipid revealed its structure to be 1,2-diacyl- sn -glycero-3-pryophosphoryl-GlcNAc-ManNAcA (DGP- disaccharide). An examination of purified ECAPGby phosphorus-31 nuclear magnetic resonance spectroscopy confirmed that the polysaccharide chains are linked to diacylglycerol through phosphodiester linkage. Thus, DGP-disaccharide does not appear to be an intermediate in ECAPGsynthesis. Nevertheless, although the available evidence clearly indicate that lipid II is a precursor of DGP-disaccharide, the function of this novel glycolipid is not yet known, and it may be an intermediate in the biosynthesis of a molecule other than ECAPG.   相似文献   
20.
利用原位杂交的方法检测KGFmRNA在正常喉粘膜上皮(N)、慢性非特异性炎症(IF)、不典型增生(DYS)及鳞癌(SCC)中的转录水平,探讨KGF在喉粘膜良性及恶性病变中的分布和可能的作用。结果表明,KGFmRNA不仅在间质中的成纤维细胞中表达,少量的炎细胞及血管内皮细胞中亦表达,而且从N、IF、DYS到SCC、KGFmRNA转录水平逐渐增强;上皮细胞及肿瘤性上皮细胞不表达KGFmRNA,KGFmRNA在分化差的SCC周围间质中表达较分化好的SCC周围间质增多。结论:KGF在上皮与间充质细胞的交互作用中发挥着重要的作用,对维持喉粘膜正常结构、代谢及喉癌的发生发展具有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号