首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   18篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有60条查询结果,搜索用时 62 毫秒
21.
Strategies for the chemical construction of synthetic proteins with precisely positioned post-translational modifications or their mimics offer a powerful method for dissecting the complexity of functional protein alteration and the associated complexity of proteomes.  相似文献   
22.
A comparative genomic approach was used to identify Helicobacter pylori 26695 open reading frames (ORFs) which are conserved in H. pylori J99 but highly diverged in other eubacteria. A survey of selected pathways of central intermediary metabolism was also carried out, and genes with a potentially selective role in H. pylori were identified. Forty-five ORFs identified in these two analyses were screened using a rapid vector-free allelic replacement mutagenesis technique, and 33 were shown to be essential in vitro. Notably, 13 ORFs gave essentiality results which are unexpected in view of their known or proposed functions, and phylogenetic analysis was used to investigate the annotation of 7 such ORFs which are highly diverged. We propose that the products of a number of these H. pylori-specific essential genes may be suitable targets for novel anti-H. pylori therapies.  相似文献   
23.
Gene sequences encoding the enzymes UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from many bacterial sources were analyzed. It was shown that whereas gram-negative bacteria have only one murA gene, gram-positive bacteria have two distinct genes encoding these enzymes which have possibly arisen from gene duplication. The two murA genes of the gram-positive organism Streptococcus pneumoniae were studied further. Each of the murA genes was individually inactivated by allelic replacement. In each case, the organism was viable despite losing one of its murA genes. However, when attempts were made to construct a double-deletion strain, no mutants were obtained. This indicates that both genes encode active enzymes that can substitute for each other, but that the presence of a MurA function is essential to the organism. The two genes were further cloned and overexpressed, and the enzymes they encode were purified. Both enzymes catalyzed the transfer of enolpyruvate from phosphoenolpyruvate to UDP-N-acetylglucosamine, confirming they are both active UDP-N-acetylglucosamine enolpyruvyl transferases. The catalytic parameters of the two enzymes were similar, and they were both inhibited by the antibiotic fosfomycin.  相似文献   
24.
A genomics-based approach was used to identify the entire gene complement of putative two-component signal transduction systems (TCSTSs) in Streptococcus pneumoniae. A total of 14 open reading frames (ORFs) were identified as putative response regulators, 13 of which were adjacent to genes encoding probable histidine kinases. Both the histidine kinase and response regulator proteins were categorized into subfamilies on the basis of phylogeny. Through a systematic programme of mutagenesis, the importance of each novel TCSTS was determined with respect to viability and pathogenicity. One TCSTS was identified that was essential for the growth of S. pneumoniaeThis locus was highly homologous to the yycFG gene pair encoding the essential response regulator/histidine kinase proteins identified in Bacillus subtilis and Staphylococcus aureus. Separate deletions of eight other loci led in each case to a dramatic attenuation of growth in a mouse respiratory tract infection model, suggesting that these signal transduction systems are important for the in vivo adaptation and pathogenesis of S. pneumoniae. The identification of conserved TCSTSs important for both pathogenicity and viability in a Gram-positive pathogen highlights the potential of two-component signal transduction as a multicomponent target for antibacterial drug discovery.  相似文献   
25.
Chalker DL  Fuller P  Yao MC 《Genetics》2005,169(1):149-160
Approximately 6000 DNA elements, totaling nearly 15 Mb, are coordinately excised from the developing somatic genome of Tetrahymena thermophila. An RNA interference (RNAi)-related mechanism has been implicated in the targeting of these germline-limited sequences for chromatin modification and subsequent DNA rearrangement. The excision of individual DNA segments can be inhibited if the homologous sequence is placed within the parental somatic nucleus, indicating that communication occurs between the parental and developing genomes. To determine how the DNA content of one nucleus is communicated to the other, we assessed DNA rearrangement occurring in wild-type cells that were mated to cells that contained the normally germline-limited M element within their somatic nuclei. M-element rearrangement was blocked in the wild-type cell even when no genetic exchange occurred between mating partners, a finding that is inconsistent with any genetic imprinting models. This inhibition by the parental somatic nucleus was rapidly established between 5 and 6 hr of conjugation, near or shortly after the time that zygotic nuclei are formed. M-element small RNAs (sRNAs) that are believed to direct its rearrangement were found to rapidly accumulate during the first few hours of conjugation before stabilizing to a low, steady-state level. The period between 5 and 6 hr during which sRNA levels stabilize correlates with the time after which the parental genome can block DNA rearrangement. These data lead us to suggest that homologous sRNAs serve as mediators to communicate sequence-specific information between the parental and developing genomes, thereby regulating genome-wide DNA rearrangement, and that these sRNAs can be effectively compared to the somatic genome of both parents.  相似文献   
26.
Site-specific DNA deletion occurs at thousands of sites within the genome during macronuclear development of Tetrahymena thermophila. These deletion elements are usually not detected in macronuclear chromosomes. We have interfered with the normal deletion of two of these elements, the adjacent M and R elements, by loading vegetative macronuclei with these elements prior to sexual conjugation. Transformed cell lines containing the exogenous M or R element, carried on high-copy-number vectors containing genes encoding rRNA within parental (old) macronuclei, consistently failed to excise chromosomal copies of the M or R element during formation of new macronuclei. Little or no interference with the deletions of adjacent elements or of unlinked elements was observed. The micronucleus (germ line)-limited region of each element was sufficient to inhibit specific DNA deletion. This interference with DNA deletion usually is manifested as a cytoplasmic dominant trait: deletion elements present in the old macronucleus of one partner of a mating pair were sufficient to inhibit deletion occurring in the other partner. Remarkably, the failure to excise these elements became a non-Mendelian, inheritable trait in the next generation and did not require the high copy number of exogenously introduced elements. The introduction of exogenous deletion elements into parental macronuclei provides us with an epigenetic means to establish a heritable pattern of DNA rearrangement.  相似文献   
27.
28.
A transposon in the germline genome of the ciliate Oxytricha uses its transposase to remove itself, as well as other germline-limited DNA, from the differentiating somatic genome during development.  相似文献   
29.
In situ rates of linear growth (branch extension) were measured for Acropora formosa (Dana) at depths of 5, 10, and 15 m. Estimates of radial branch growth and internal accretion were made at the shallowest and deepest sites. In addition, reciprocal transplant experiments between these two sites were conducted using branches of different lengths. The in situ results showed that individual branches at the deep site extended twice as fast, and deposited more calcium carbonate than branches at the shallow site. Branch initiation, however, was more rapid at the shallow site. Thus, if the extension of new lateral branches were included to obtain a measure of overall growth, rates were highest at the shallow site. The initial length of the transplanted branches significantly affected growth rates. Longer branches showed greater overall growth within all treatments. Branch extension rates, however, increased with initial branch length at the deep site, while tending to remain constant at the shallow site. This result is interpreted as evidence that the extension of each branch tip at the deep site was supported by translocated metabolites derived from a greater volume of zooxanthellae-bearing tissue than at the shallow site. A. formosa exhibits different growth patterns at different depths. At the deep site, extension is favoured over branch initiation. Consequently, translocation from a greater volume of tissue is presumably available to sustain the higher extension rate at each tip. At the shallow site, where extension is less rapid but branch initiation is more rapid, each tip probably receives translocate from a smaller volume of tissue. These mechanisms result in different growth forms at the two sites and are apparently adaptations to different environmental conditions. Light or water motion, or a combination of the two are proposed as probable controlling factors.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号