首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1069篇
  免费   83篇
  2023年   5篇
  2022年   6篇
  2021年   22篇
  2020年   11篇
  2019年   15篇
  2018年   28篇
  2017年   14篇
  2016年   31篇
  2015年   64篇
  2014年   65篇
  2013年   68篇
  2012年   92篇
  2011年   75篇
  2010年   48篇
  2009年   47篇
  2008年   59篇
  2007年   66篇
  2006年   52篇
  2005年   62篇
  2004年   42篇
  2003年   40篇
  2002年   51篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   8篇
  1996年   18篇
  1995年   5篇
  1994年   7篇
  1993年   7篇
  1992年   9篇
  1990年   4篇
  1989年   7篇
  1987年   7篇
  1986年   5篇
  1985年   11篇
  1984年   9篇
  1983年   6篇
  1981年   9篇
  1980年   3篇
  1978年   6篇
  1976年   7篇
  1974年   4篇
  1973年   7篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   4篇
  1968年   5篇
  1953年   2篇
排序方式: 共有1152条查询结果,搜索用时 375 毫秒
21.
When a wild-type strain ofEscherichia coli contains lactose permease, the accumulation of cyclic AMP (cAMP) by intact cells isinhibited by lactose. This inhibitory effect of lactose is observed in a strain with a mutant cAMP phosphodiesterase and therefore involves a regulation of adenylate cyctase activity. Some E. coli strains carrying mutations in lactose permease show an effect opposite to that of the wild-type strain; the accumulation of cAMP by intact cells isstimulated by lactose, but only when the mutant permease is present. Insertion of lactose permease into the membrane of ceils can produce a change in the specific activity of adenylate cycIase; induction of the wild-type transporter is correlated with a decrease in the specific activity, while implantation of a mutant form of lactose permease can lead to an increase in the specific activity. From these data, it is suggested that the state of the lactose transporter in the cell membrane influences the activity of adenytate cyclase.  相似文献   
22.
23.
24.
Summary We used fluorescence microscopy of Madin-Darby Canine Kidney (MDCK) cells grown on polycarbonate filters to study a possible link between plasma membrane electrical potential (pm) and infectivity of vesicular stomatitis virus (VSV). Complete substitution of K+ for extracellular Na+blocks VSV infection of MDCK cells as well as baby hamster kidney (BHK) cells. When we independently perfused the apical and basal-lateral surfaces of high resistance monolayers, high K+ inhibited VSV infection of MDCK cells only when applied to the basal-lateral side; high K+ applied apically had no effect on VSV infection. This morphological specificity correlates with a large decrease in pm of MDCK cells when high K+ buffer is perfused across the basal-lateral surface. Depolarization of the plasma membrane by 130 mm basal K+ causes a sustained increase of cytosol pH in MDCK cells from 7.3 to 7.5 as reported by the fluorescent dye BCECF. Depolarization also causes a transient increase of cytosol Ca2+ from 70 to 300 nm as reported by the dye Fura-2. Neither increase could explain the block of VSV infectivity by plasma membrane depolarization. One alternative hypothesis is that pm facilitates membrane translocation of viral macromolecules as previously described for colicins, mitochondrial import proteins, and proteins secreted by Escherichia coli.We thank Kenneth Spring for many helpful discussions concerning fluorescence digitized imaging systems, James Russell for his collaboration in the design of our imaging system, Herbert Chase for suggestions on dye loading into MDCK cells, and Manfred Schubert and George Harmison for providing expertise on VSV.  相似文献   
25.
26.
The accumulation and distribution of proteolipid proteins in rat brain and selected brain regions (cerebellum, cerebral cortex, basal ganglia, and hippocampus) were studied during early postnatal development. In whole brain an eightfold increase of proteolipid was observed between ten and 33 days after birth. This was reflected in the separate regions examined where the proteolipid protein content increased six- to ten-fold during the same period. The basal ganglia and cerebral cortex contributed the greatest amount to the total proteolipid present. However, at 28–33 days the greatest concentration (mg/g tissue) was observed in the basal ganglia and hippocampus. When the proteolipid protein preparations were examined by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, distinctive, heterogeneous patterns for each brain region were obtained. Proteolipid from basal ganglia (the region richest in white matter) consisted primarily of two major protein bands with apparent molecular weights of approximately 21,500 and 26,000. Both of these bands dramatically increased in quantity during myelination, and the larger protein coelectrophoresed with isolated myelin proteolipid protein. Both bands were also found present in proteolipid preparations from the other brain regions but in varying amounts relative to the total. The data suggest that the increase in proteolipid observed during this developmental period was due in large measure to the accumulation of myelin-specific proteolipids, but also that a significant proportion of the increase was due to the accumulation of nonmyelin components.  相似文献   
27.
Sleep disorders are a major risk factor for cardiovascular diseases. Sleep apnea is the most common sleep disturbance and its detection relies on a polysomnography, i.e., a combination of several medical examinations performed during a monitored sleep night. In order to detect occurrences of sleep apnea without the need of combined recordings, we focus our efforts on extracting a quantifier related to the events of sleep apnea from a cardiovascular time series, namely systolic blood pressure (SBP). Physiologic time series are generally highly nonstationary and entrap the application of conventional tools that require a stationary condition. In our study, data nonstationarities are uncovered by a segmentation procedure which splits the signal into stationary patches, providing local quantities such as mean and variance of the SBP signal in each stationary patch, as well as its duration . We analysed the data of 26 apneic diagnosed individuals, divided into hypertensive and normotensive groups, and compared the results with those of a control group. From the segmentation procedure, we identified that the average duration , as well as the average variance , are correlated to the apnea-hypoapnea index (AHI), previously obtained by polysomnographic exams. Moreover, our results unveil an oscillatory pattern in apneic subjects, whose amplitude is also correlated with AHI. All these quantities allow to separate apneic individuals, with an accuracy of at least . Therefore, they provide alternative criteria to detect sleep apnea based on a single time series, the systolic blood pressure.  相似文献   
28.
Unlike most cells of the body which function in an ionic environment controlled within narrow limits, spermatozoa must function in a less controlled external environment. In order to better understand how sperm control their membrane potential in different ionic conditions, we measured mouse sperm membrane potentials under a variety of conditions and at different external K+ concentrations, both before and after capacitation. Experiments were undertaken using both wild-type, and mutant mouse sperm from the knock-out strain of the sperm-specific, pH-sensitive, SLO3 K+ channel. Membrane voltage data were fit to the Goldman-Hodgkin-Katz equation. Our study revealed a significant membrane permeability to both K+ and Cl before capacitation, as well as Na+. The permeability to both K+ and Cl has the effect of preventing large changes in membrane potential when the extracellular concentration of either ion is changed. Such a mechanism may protect against undesired shifts in membrane potential in changing ionic environments. We found that a significant portion of resting membrane potassium permeability in wild-type sperm was contributed by SLO3 K+ channels. We also found that further activation of SLO3 channels was the essential mechanism producing membrane hyperpolarization under two separate conditions, 1) elevation of external pH prior to capacitation and 2) capacitating conditions. Both conditions produced a significant membrane hyperpolarization in wild-type which was absent in SLO3 mutant sperm. Hyperpolarization in both conditions may result from activation of SLO3 channels by raising intracellular pH; however, demonstrating that SLO3-dependent hyperpolarization is achieved by an alkaline environment alone shows that SLO3 channel activation might occur independently of other events associated with capacitation. For example sperm may undergo stages of membrane hyperpolarization when reaching alkaline regions of the female genital tract. Significantly, other events associated with sperm capacitation, occur in SLO3 mutant sperm and thus proceed independently of hyperpolarization.  相似文献   
29.
Microscale pigment adjustments to a tropical photosynthetically active radiation and ultraviolet (UV) environment by the intertidal turf algae Ahnfeltiopsis concinna (J. Ag.) Silva et DeCew and Laurencia mcdermidiae (J. Ag) Abbott were promoted by thalli densities that self-shade the under story portions of the same diminutive axes. Tissues of A. concinna from canopy microsites had significantly reduced levels of phycoerythrin, phycocyanin, and allophycocyanin compared to tissues from understory microsites of the same axes. Tissues of L. mcdermidiae from canopy microsites had reduced levels of only phycoerythrin compared to tissues from understory microsites. These alterations coupled with enhanced levels of carotenoid and UV-absorbing compounds in tissues from canopy compared to tissues from understory microsites indicated a pattern of remarkably sensitive photoacclimation over the ≤10-cm axes of these turf-forming rhodophytes. Microscale variation in the in vivo UV absorbance capabilities for turfs of A. concinna and L. mcdermidiae was directly related to the amount of extractable UV-absorbing compounds. An in vivo absorbance signature at ~345 nm appears to provide a method to quickly and accurately gauge the potential UV-shielding capacity of primary producers even at remarkably fine ecological scales. The capacity for highly responsive biochemical adjustments that result in marked canopy–understory distinctions coupled with a turf morphology may be crucial for macroalgal tolerance of physiological stresses associated with tropical intertidal zones. This responsive capacity allows for enhanced photoprotective mechanisms in tissues from canopy microsites while optimizing irradiance capture in deeply shaded tissues from understory microsites < 10 cm away.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号