首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   501篇
  免费   39篇
  2023年   3篇
  2022年   1篇
  2021年   14篇
  2020年   9篇
  2019年   4篇
  2018年   11篇
  2017年   7篇
  2016年   17篇
  2015年   14篇
  2014年   14篇
  2013年   39篇
  2012年   64篇
  2011年   41篇
  2010年   29篇
  2009年   24篇
  2008年   43篇
  2007年   32篇
  2006年   25篇
  2005年   34篇
  2004年   29篇
  2003年   34篇
  2002年   24篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   6篇
  1997年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1965年   1篇
排序方式: 共有540条查询结果,搜索用时 609 毫秒
41.
E-cadherin has been linked to the suppression of tumor growth and the inhibition of cell proliferation in culture. We observed that progressively decreasing the seeding density of normal rat kidney-52E (NRK-52E) or MCF-10A epithelial cells from confluence, indeed, released cells from growth arrest. Unexpectedly, a further decrease in seeding density so that cells were isolated from neighboring cells decreased proliferation. Experiments using microengineered substrates showed that E-cadherin engagement stimulated the peak in proliferation at intermediate seeding densities, and that the proliferation arrest at high densities did not involve E-cadherin, but rather resulted from a crowding-dependent decrease in cell spreading against the underlying substrate. Rac1 activity, which was induced by E-cadherin engagement specifically at intermediate seeding densities, was required for the cadherin-stimulated proliferation, and the control of Rac1 activation by E-cadherin was mediated by p120-catenin. Together, these findings demonstrate a stimulatory role for E-cadherin in proliferative regulation, and identify a simple mechanism by which cell-cell contact may trigger or inhibit epithelial cell proliferation in different settings.  相似文献   
42.
The Ras family of small GTPases regulates cell proliferation, spreading, migration and apoptosis, and malignant transformation by binding to several protein effectors. One such GTPase, R-Ras, plays distinct roles in each of these processes, but to date, identified R-Ras effectors were shared with other Ras family members (e.g., H-Ras). We utilized a new database of Ras-interacting proteins to identify RLIP76 (RalBP1) as a novel R-Ras effector. RLIP76 binds directly to R-Ras in a GTP-dependent manner, but does not physically associate with the closely related paralogues H-Ras and Rap1A. RLIP76 is required for adhesion-induced Rac activation and the resulting cell spreading and migration, as well as for the ability of R-Ras to enhance these functions. RLIP76 regulates Rac activity through the adhesion-induced activation of Arf6 GTPase and activation of Arf6 bypasses the requirement for RLIP76 in Rac activation and cell spreading. Thus, we identify a novel R-Ras effector, RLIP76, which links R-Ras to adhesion-induced Rac activation through a GTPase cascade that mediates cell spreading and migration.  相似文献   
43.
44.
Endothelial cells are normally non-motile and quiescent; however, endothelial cells will become permeable and invade and proliferate to form new blood vessels (angiogenesis) in response to wounding, cancer, diabetic retinopathy, age-related macular degeneration, or rheumatoid arthritis. p21-activated kinase (Pak), an effector for the Rho GTPases Rac and Cdc42, is required for angiogenesis and regulates endothelial cell permeability and motility. Although Pak is primarily activated by Rac and Cdc42, there are additional proteins that regulate Pak activity and localization, including three AGC protein kinase family members, Akt-1, PDK-1, and cAMP-dependent protein kinase. We describe phosphorylation and regulation of Pak localization by a fourth AGC kinase family member, cGMP-dependent protein kinase (PKG). Using in vitro mapping, a phosphospecific antibody, co-transfection assays, and untransfected bovine aortic endothelial cells we determined that PKG phosphorylates Pak at serine 21. Phosphorylation was accompanied by changes in proteins associated with Pak. The adaptor protein Nck was released, whereas a novel complex with vasodilator-stimulated phosphoprotein was stimulated. Furthermore Ser-21 phosphorylation of Pak appears to be important for regulation of cell morphology. In both human umbilical vein endothelial cells and HeLa cells, activation of PKG in the presence of Pak stimulated tail retraction and cell polarization. However, in cells expressing S21A mutant Pak1, PKG activation or treatment with a peptide that blocks Nck/Pak binding caused aberrant cell morphology, blocked cell retraction, and mislocalized Pak, producing uropod (tail-like) structures. These data suggest that PKG regulates Pak and that the interaction plays a role in tail retraction.  相似文献   
45.
MDC1 functions in checkpoint activation and DNA repair following DNA damage. To address the physiological role of MDC1, we disrupted the MDC1 gene in mice. MDC1-/- mice recapitulated many phenotypes of H2AX-/- mice, including growth retardation, male infertility, immune defects, chromosome instability, DNA repair defects, and radiation sensitivity. At the molecular level, H2AX, MDC1, and ATM form a positive feedback loop, with MDC1 directly mediating the interaction between H2AX and ATM. MDC1 binds phosphorylated H2AX through its BRCT domain and ATM through its FHA domain. Through these interactions, MDC1 accumulates activated ATM flanking the sites of DNA damage, facilitating further ATM-dependent phosphorylation of H2AX and the amplification of DNA damage signals. In the absence of MDC1, many downstream ATM signaling events are defective. These results suggest that MDC1, as a signal amplifier of the ATM pathway, is vital in controlling proper DNA damage response and maintaining genomic stability.  相似文献   
46.
Hypoxia-induced energy stress regulates mRNA translation and cell growth   总被引:10,自引:0,他引:10  
Oxygen (O2) deprivation, or hypoxia, has profound effects on cell metabolism and growth. Cells can adapt to low O2 in part through activation of hypoxia-inducible factor (HIF). We report here that hypoxia inhibits mRNA translation by suppressing multiple key regulators, including eIF2alpha, eEF2, and the mammalian target of rapamycin (mTOR) effectors 4EBP1, p70S6K, and rpS6, independent of HIF. Hypoxia results in energy starvation and activation of the AMPK/TSC2/Rheb/mTOR pathway. Hypoxic AMP-activated protein kinase (AMPK) activation also leads to eEF2 inhibition. Moreover, hypoxic effects on cellular bioenergetics and mTOR inhibition increase over time. Mutation of the TSC2 tumor suppressor gene confers a growth advantage to cells by repressing hypoxic mTOR inhibition and hypoxia-induced G1 arrest. Together, eIF2alpha, eEF2, and mTOR inhibition represent important HIF-independent mechanisms of energy conservation that promote survival under low O2 conditions.  相似文献   
47.
The angiotensin II (AngII) type I receptor (AT1) was modified by replacing its third intracellular loop and C-terminal tail with the corresponding regions from the bradykinin B2 receptor. Transgenic mice were produced that overexpress this mutated receptor (AB3T). Considerably less collagen content in the intact aorta and in primary aortic smooth muscle cells (aSMCs) cultures was observed in the transgenic mice. On the other hand, elastin content remained unchanged as measured by Western blot, and insoluble amino acid quantitation. The contraction of isolated aortas also remained unaltered. The aSMCs derived from the transgenic mice showed a reduction in AngII responsive type I collagen production. In aSMCs from transgenic mice, the cascade of Akt to the mammalian target rapamycin (mTOR) to p70 S6 kinase (p70S6K) was not AngII activated, while in the aSMCs from wild-type (WT) mice the cascade was AngII activated. Angiotensin activation of Smad2 and Stat3 was also reduced in the AB3T aSMCs. However, no change in the effect of transforming growth factor β (TGFβ) on type I collagen production was observed. Also, the activation of ERK and JNK and G-protein linked signaling remained unaltered in response to AngII. Akt and PI3K activation inhibitors blocked AngII-stimulated type I collagen expression in WT aSMCs, whereas ERK inhibitor had no such effect. Our results point to an Akt/mTOR/p70S6K regulation of collagen production by AngII with participation of Smad2 and Stat3 cascades in this process.  相似文献   
48.
Chagas disease is caused by Trypanosoma cruzi, being considered a public health problem. An alternative to combat this pathogen is the use of natural products isolated from fruits such as Eugenia uniflora, a plant used by traditional communities as food and medicine due to its antimicrobial and biological activities. Ethanolic extract from E. uniflora was used to evaluate in vitro anti-epimastigote and cytotoxic activity. This is the first record of anti-Trypanosoma activity of E. uniflora, demonstrating that a concentration presenting 50% of activity (EC(50)) was 62.76 μg/mL. Minimum inhibitory concentration (MIC) was ≤ 1024 μg/mL. Our results indicate that E. uniflora could be a source of plant-derived natural products with anti-epimastigote activity with low toxicity.  相似文献   
49.
DNA methylation is a key regulator of gene expression and changes in DNA methylation occur early in tumorigenesis. Mutations in the de novo DNA methyltransferase gene, DNMT3A, frequently occur in adult acute myeloid leukemia patients with poor prognoses. Most of the mutations occur within the dimer or tetramer interface, including Arg-882. We have identified that the most prevalent mutation, R882H, and three additional mutants along the tetramer interface disrupt tetramerization. The processive methylation of multiple CpG sites is disrupted when tetramerization is eliminated. Our results provide a possible mechanism that accounts for how DNMT3A mutations may contribute to oncogenesis and its progression.  相似文献   
50.
The use of whips by jockeys is an issue. The current study viewed opportunistic high-speed footage of 15 race finishes frame-by-frame to examine the outcomes of arm and wrist actions (n = 350) on 40 horses viewed from the left of the field. Any actions fully or partially obscured by infrastructure or other horses were removed from the database, leaving a total of 104 non-contact sweeps and 134 strikes. For all instances of arm actions that resulted in fully visible whip strikes behind the saddle (n = 109), the outcomes noted were area struck, percentage of unpadded section making contact, whether the seam made contact and whether a visible indentation was evident on impact. We also recorded use of clockwise or counter-clockwise arm action from each jockey''s whip, whether the whip was held like a tennis racquet or a ski pole, whether the hind leg on the side of the impact was in stance or swing phase and whether the jockey''s arm was seen traveling above shoulder height. The goal of the study was to characterize the area struck and the visual impact of whip use at the level of the horse. We measured the ways in which both padded and unpadded sections of the whip made impact. There was evidence of at least 28 examples, in 9 horses, of breaches of the whip rules (one seam contact, 13 contacts with the head, and 14 arm actions that rose above the height of the shoulder). The whip caused a visible indentation on 83% of impacts. The unpadded section of the whip made contact on 64% of impacts. The results call into question the ability of Stewards to effectively police the rules concerning whip use and, more importantly, challenge the notion that padding the distal section of whips completely safeguards horses from any possible whip-related pain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号