首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1284篇
  免费   108篇
  2023年   6篇
  2022年   11篇
  2021年   30篇
  2020年   27篇
  2019年   32篇
  2018年   44篇
  2017年   35篇
  2016年   49篇
  2015年   65篇
  2014年   71篇
  2013年   100篇
  2012年   107篇
  2011年   104篇
  2010年   71篇
  2009年   64篇
  2008年   90篇
  2007年   62篇
  2006年   63篇
  2005年   61篇
  2004年   50篇
  2003年   44篇
  2002年   54篇
  2001年   21篇
  2000年   19篇
  1999年   9篇
  1998年   6篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   3篇
  1992年   11篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   4篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1981年   3篇
  1977年   3篇
  1976年   9篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
  1961年   1篇
  1953年   1篇
  1948年   1篇
排序方式: 共有1392条查询结果,搜索用时 31 毫秒
991.
A field study was designed to examine the effect of desert shrubs on the dynamics of free-living amoebae in arid soil. Soil samples from 0- to 50-cm depths were collected at 10-cm intervals in each of the four seasons. The vertical distributions of the four main morphological types of amoebae, grouped according to their mobility, and of small flagellate populations were measured under the canopies of Hammada scoparia and Atriplex halimus, shrubs belonging to the chloride-absorbing xerohalophytes. The result obtained from the field study demonstrated that the total number of protozoa was significantly higher during the wet seasons (winter and spring) than during the dry seasons. The protozoan population was more diverse under the canopy of H. scoparia during the wet seasons, reaching 8,000 individuals per 1 g of dry soil, whereas during the dry seasons, the populations were higher under the canopy of A. halimus, with a mean of 250 individuals. The protozoan population in the deeper layers (40 to 50 cm) was found to be as active as that in the upper layers, demonstrating that, in the desert, soil columns below 20 cm are fertile and worth studying. The type 1 amoebae (e.g., Acanthamoeba and Filamoeba spp.) were the most abundant throughout the study period, and their numbers were significantly higher than those of the other amoeba types.  相似文献   
992.
Expression of inducible nitric-oxide (NO) synthase (iNOS) and "high-output" production of NO by macrophages mediates many cytotoxic actions of these immune cells. However, macrophages have also been shown to express a constitutive NOS isoform, the function of which remains obscure. Herein, bone marrow-derived macrophages (BMDM?s) from wild-type and endothelial NOS (eNOS) knock-out (KO) mice have been used to assess the role of this constitutive NOS isoform in the regulation of macrophage activation. BMDM?s from eNOS KO animals exhibited reduced nuclear factor-kappaB activity, iNOS expression, and NO production after exposure to lipopolysaccharide (LPS) as compared with cells derived from wild-type mice. Soluble guanylate cyclase (sGC) was identified in BMDM?s at a mRNA and protein level, and activation of cells with LPS resulted in accumulation of cyclic GMP. Moreover, the novel non-NO-based sGC activator, BAY 41-2272, enhanced BMDM? activation in response to LPS, and the sGC inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one attenuated activation. These observations provide the first demonstration of a pathophysiological role for macrophage eNOS in regulating cellular activation and suggest that NO derived from this constitutive NOS isoform, in part via activation of sGC, is likely to play a pivotal role in the initiation of an inflammatory response.  相似文献   
993.
Three lipoxygenase isoforms were isolated from Glycine max embryo axes. A number of proteins around 97 kDa cross-reacted with several anti-actin and anti-myosin antibodies and these were used to follow their purification through gel filtration, hydroxyapatite and anion exchange columns. The 97-kDa cross-reactive material eluted in the unbound fractions of the last anion exchange column, and displayed two components of pI's 6.2 and 6.3. Further phase partition of this fraction in TX-114 yielded a hydrophobic 97 kDa protein. Additionally, a 95-kDa protein was retained and eluted from this last column. Partial peptide sequences indicated that the 95 kDa protein was soybean lipoxygenase-1, the first 97 kDa protein was lypoxygenase-3, and the hydrophobic 97 kDa protein was lipoxygenase-2. Several possible reasons for the cross-reactivity with the antibodies are discussed. To our knowledge, this is the first example of individual lipoxygenase isoforms isolated from soybean embryo axes.  相似文献   
994.
Cultivated squash (Cucurbita argyrosperma ssp. argyrosperma and C. moschata) are important in the Mexican traditional agroecosystem. They are typically cultivated within maize fields where adjacent populations of a wild, close relative, C. argyrosperma ssp. sororia, occur. Consequently, there are ample opportunities for gene flow between domesticated and free-living Cucurbita populations. We used allozymes to examine genetic variation and gene flow among these three Cucurbita taxa in the state of Jalisco in Western Mexico. Twelve polymorphic allozyme loci were used to calculate genetic diversity for 16 populations of Cucurbita. We found high levels of genetic variation: polymorphism of 0.96, mean allelic diversity of 2.08, average expected heterozygosity 0.407, and little differentiation among conspecific populations (D = 0.081; F(ST) = 0.087; N(e)m = 5.22). These findings indicate that Cucurbita possess a high pollen dispersal potential, a somewhat surprising result considering they have specialist pollinators. Unweighted pair group method with arithmetic means (UPGMA) analysis of allozymes suggests the existence of at least two distinct groups of populations, one consisting of both subspecies of C. argyrosperma and another consisting of C. moschata.  相似文献   
995.
We have designed de novo 13 divergent spectrin SH3 core sequences to determine their folding properties. Kinetic analysis of the variants with stability similar to that of the wild type protein shows accelerated unfolding and refolding rates compatible with a preferential stabilization of the transition state. This is most likely caused by conformational strain in the native state, as deletion of a methyl group (Ile-->Val) leads to deceleration in unfolding and increased stability (up to 2 kcal x mol(-1)). Several of these Ile-->Val mutants have negative phi(-U) values, indicating that some noncanonical phi(-U) values might result from conformational strain. Thus, producing a stable protein does not necessarily mean that the design process has been entirely successful. Strained interactions could have been introduced, and a reduction in the buried volume could result in a large increase in stability and a reduction in unfolding rates.  相似文献   
996.
To provide a bridge between in vivo and in vitro studies of eukaryotic translation initiation, we have developed a reconstituted translation initiation system using components from the yeast Saccharomyces cerevisiae. We have purified a minimal set of initiation factors (elFs) that, together with yeast 80S ribosomes, GTP, and initiator methionyl-tRNA, are sufficient to assemble active initiation complexes on a minimal mRNA template. The kinetics of various steps in the pathway of initiation complex assembly and the formation of the first peptide bond in vitro have been explored. The formation of active initiation complexes in this system is dependent on ribosomes, mRNA, Met-tRNAi, GTP hydrolysis, elF1, elF1A, elF2, elF5, and elF5B. Our data indicate that elF1 and elF1A both facilitate the binding of the elF2 x GTP x Met-tRNAi complex to the 40S ribosomal subunit to form the 43S complex. elF5 stimulates a step after 43S complex formation, consistent with its proposed role in activating GTP hydrolysis by elF2 upon initiation codon recognition. The presence of elF5B is required for the joining of the 40S and 60S subunits to form the 80S initiation complex. The step at which each of these factors acts in this reconstituted system is in agreement with previous data from in vivo studies and work using reconstituted mammalian systems, indicating that the system recapitulates fundamental events in translation initiation in eukaryotic cells. This system should allow us to couple powerful yeast genetic and molecular biological experiments with in vitro kinetic and biophysical experiments, yielding a better understanding of the molecular mechanics of this central, complex process.  相似文献   
997.
998.
999.
Diabetes affects a variety of tissues including the central nervous system; moreover, some evidence indicates that memory and learning processes are disrupted. Also, oxidative stress triggers alterations in different tissues including the brain. Recent studies indicate mitochondria dysfunction is a pivotal factor for neuron damage. Therefore, we studied mitochondrial activity in three brain regions at early type I—diabetes induction. Isolated mitochondria from normal hippocampus, cortex and cerebellum revealed different rates of oxygen consumption, but similar respiratory controls. Oxygen consumption in basal state 4 significantly increased in the mitochondria from all three brain regions from diabetic rats. No relevant differences were observed in the activity of respiratory complexes, but hippocampal mitochondrial membrane potential was reduced. However, ATP content, mitochondrial cytochrome c, and protein levels of β-tubulin III, synaptophysin, and glutamine synthase were similar in brain regions from normal and diabetic rats. In addition, no differences in total glutathione levels were observed between normal and diabetic rat brain regions. Our results indicated that different regions of the brain have specific metabolic responses. The changes in mitochondrial activity we observed at early diabetes induction did not appear to cause metabolic alterations, but they might appear at later stages. Longer-term streptozotocin treatment studies must be done to elucidate the impact of hyperglycemia in brain metabolism and the function of specific brain regions.  相似文献   
1000.
As with other anterior pituitary hormones, the secretion of both thyrotrophin (TSH) and prolactin (PRL) displays a circadian variation with different patterns for each hormone. In recent years there has been a substantial increase in the understanding of the neuroregulation oof TSH and PRL. However the primary events involved in the generation of their circadian rhythms remains unclear. Regulatory pathways comprise two major groups: central factors, where the control is exerted by the central nervous system via the hypothalamus and peripheral factors, which include all extra CNS mechanisms. The first group is represented mainly by neuropeptides and neurotransmitters controlling TSH and PRL release, whereas the second one comprises both physical phenomena such as variations in plasma volume or postural changes and hormonal influences arising from target glands such as the adrenal, the thyroid and the gonads.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号