首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2904篇
  免费   269篇
  2022年   10篇
  2021年   52篇
  2020年   25篇
  2019年   38篇
  2018年   48篇
  2017年   33篇
  2016年   72篇
  2015年   128篇
  2014年   134篇
  2013年   173篇
  2012年   166篇
  2011年   209篇
  2010年   128篇
  2009年   110篇
  2008年   146篇
  2007年   206篇
  2006年   181篇
  2005年   168篇
  2004年   145篇
  2003年   140篇
  2002年   159篇
  2001年   35篇
  2000年   25篇
  1999年   33篇
  1998年   43篇
  1997年   32篇
  1996年   25篇
  1995年   28篇
  1994年   24篇
  1993年   34篇
  1992年   21篇
  1991年   19篇
  1990年   20篇
  1989年   24篇
  1988年   24篇
  1987年   24篇
  1986年   24篇
  1985年   20篇
  1984年   17篇
  1982年   10篇
  1981年   17篇
  1980年   24篇
  1979年   11篇
  1978年   16篇
  1975年   14篇
  1974年   10篇
  1973年   14篇
  1972年   13篇
  1971年   14篇
  1970年   10篇
排序方式: 共有3173条查询结果,搜索用时 250 毫秒
991.
992.
The abundant flavonoid aglycone, naringenin, which is responsible for the bitter taste in grapefruits, has been shown to possess hypolipidemic and anti-inflammatory effects both in vitro and in vivo. Recently, our group demonstrated that naringenin inhibits hepatitis C virus (HCV) production, while others demonstrated its potential in the treatment of hyperlipidemia and diabetes. However, naringenin suffers from low oral bioavailability critically limiting its clinical potential. In this study, we demonstrate that the solubility of naringenin is enhanced by complexation with β-cyclodextrin, an FDA approved excipient. Hydroxypropoyl-β-cyclodextrin (HPβCD), specifically, increased the solubility of naringenin by over 400-fold, and its transport across a Caco-2 model of the gut epithelium by 11-fold. Complexation of naringenin with HPβCD increased its plasma concentrations when fed to rats, with AUC values increasing by 7.4-fold and C(max) increasing 14.6-fold. Moreover, when the complex was administered just prior to a meal it decreased VLDL levels by 42% and increased the rate of glucose clearance by 64% compared to naringenin alone. These effects correlated with increased expression of the PPAR co-activator, PGC1α in both liver and skeletal muscle. Histology and blood chemistry analysis indicated this route of administration was not associated with damage to the intestine, kidney, or liver. These results suggest that the complexation of naringenin with HPβCD is a viable option for the oral delivery of naringenin as a therapeutic entity with applications in the treatment of dyslipidemia, diabetes, and HCV infection.  相似文献   
993.
BACKGROUND: The fasciclin-like arabinogalactan-proteins (FLAs) are an enigmatic class of 21 members within the larger family of arabinogalactan-proteins (AGPs) in Arabidopsis thaliana. Located at the cell surface, in the cell wall/plasma membrane, they are implicated in many developmental roles yet their function remains largely undefined. Fasciclin (FAS) domains are putative cell-adhesion domains found in extracellular matrix proteins of organisms from all kingdoms, but the juxtaposition of FAS domains with highly glycosylated AGP domains is unique to plants. Recent studies have started to elucidate the role of FLAs in Arabidopsis development. FLAs containing a single FAS domain are important for the integrity and elasticity of the plant cell wall matrix (FLA11 and FLA12) and FLA3 is involved in microspore development. FLA4/SOS5 with two FAS domains and two AGP domains has a role in maintaining proper cell expansion under salt stressed conditions. The role of other FLAs remains to be uncovered. METHOD/PRINCIPAL FINDINGS: Here we describe the characterisation of a T-DNA insertion mutant in the FLA1 gene (At5g55730). Under standard growth conditions fla1-1 mutants have no obvious phenotype. Based on gene expression studies, a putative role for FLA1 in callus induction was investigated and revealed that fla1-1 has a reduced ability to regenerate shoots in an in vitro shoot-induction assay. Analysis of FLA1p:GUS reporter lines show that FLA1 is expressed in several tissues including stomata, trichomes, the vasculature of leaves, the primary root tip and in lateral roots near the junction of the primary root. CONCLUSION: The results of the developmental expression of FLA1 and characterisation of the fla1 mutant support a role for FLA1 in the early events of lateral root development and shoot development in tissue culture, prior to cell-type specification.  相似文献   
994.
The hormone Insulin-like peptide 3 (INSL3) is a major secretory product of the Leydig cells from both fetal and adult testes. Consequently, it is a major gender-specific circulating hormone in the male fetus, where it is responsible for the first phase of testicular descent, and in the adult male. In most female mammals, circulating levels are very low, corresponding to only a small production of INSL3 by the mature ovaries. Female ruminants are exceptional in exhibiting high INSL3 gene expression by the thecal cells of antral follicles and by the corpora lutea. We have developed a specific and sensitive immunoassay to measure ruminant INSL3 and show that, corresponding to the high ovarian gene expression, non-pregnant adult female sheep and cows have up to four times the levels observed in other female mammals. Significantly, this level declines during mid-pregnancy in cows carrying a female fetus, in which INSL3 is undetectable. However, in cows carrying a male fetus, circulating maternal INSL3 becomes elevated further, presumably due to the transplacental transfer of fetal INSL3 into the maternal circulation. Within male fetal blood, INSL3 is high in mid-pregnancy (day 153) corresponding to the first transabdominal phase of testicular descent, and shows a marked dependence on paternal genetics, with pure bred or hybrid male fetuses of Bos taurus (Angus) paternal genome having 30% higher INSL3 levels than those of Bos indicus (Brahman) paternity. Thus INSL3 provides the first example of a gender-specific fetal hormone with the potential to influence both placental and maternal physiology.  相似文献   
995.
Cardiolipin is a glycerophospholipid found predominantly in the mitochondrial membranes of eukaryotes and in bacterial membranes. Cardiolipin interacts with protein complexes and plays pivotal roles in cellular energy metabolism, membrane dynamics, and stress responses. We recently identified the mitochondrial phosphatase, PTPMT1, as the enzyme that converts phosphatidylglycerolphosphate (PGP) to phosphatidylglycerol, a critical step in the de novo biosynthesis of cardiolipin. Upon examination of PTPMT1 evolutionary distribution, we found a PTPMT1-like phosphatase in the bacterium Rhodopirellula baltica. The purified recombinant enzyme dephosphorylated PGP in vitro. Moreover, its expression restored cardiolipin deficiency and reversed growth impairment in a Saccharomyces cerevisiae mutant lacking the yeast PGP phosphatase, suggesting that it is a bona fide PTPMT1 ortholog. When ectopically expressed, this bacterial PGP phosphatase was localized in the mitochondria of yeast and mammalian cells. Together, our results demonstrate the conservation of function between bacterial and mammalian PTPMT1 orthologs.  相似文献   
996.
Among American Indians and Alaska Natives, most aspects of ethnicity are tightly associated with the person's tribal origins. Language, history, foods, land and traditions differ among the hundreds of tribes indigenous to the USA. With this in mind, we ask why almost one million American Indians failed to respond to the tribal affiliation part of the Census 2000 race question. We investigate four hypotheses about why one-third of multiracial American Indians and one-sixth of single-race American Indians did not write any response to the tribal affiliation question: (1) survey item non-response that undermines all fill-in-the-blank questions; (2) a non-salient tribal identity; (3) a genealogy-based affiliation; and (4) a mestizo identity, which does not require a tribe. We use multivariate logistic regression models and high-density restricted-use Census 2000 data. We find support for the first two hypotheses and note that predictors differ substantially for single-race versus multiple-race American Indians.  相似文献   
997.
This research investigated the potential role of siderophores in aerobic microbial Fe acquisition from natural organic matter (NOM; XAD-8 isolate and reverse osmosis concentrate pre- and post-Chelex® treatment) through the use of a siderophore-producing Pseudomonas mendocina wild type (WT) bacterium and an engineered mutant (Mt) that was incapable of siderophore production. NOM had complex effects on microbial growth under Fe-limited conditions as measured by optical density, most likely because of the presence of other toxic (trace) metals such as Al, NOM binding interference with additional trace metal nutrients, and/or biofilm development. However, a bioassay for cellular Fe status showed that both WT and Mt readily acquired Fe naturally associated with NOM. Thus, while siderophores may be useful for Fe acquisition from NOM by P. mendocina, they do not appear to be essential for this process.  相似文献   
998.
999.

Background

Mitochondrial dysfunction contributes to degenerative neurological disorders, consequently there is a need for mitochondria-targeted therapies that are effective within the brain. One approach to deliver pharmacophores is by conjugation to the lipophilic triphenylphosphonium (TPP) cation that accumulates in mitochondria driven by the membrane potential. While this approach has delivered TPP-conjugated compounds to the brain, the amounts taken up are lower than by other organs.

Methods

To discover why uptake of hydrophobic TPP compounds by the brain is relatively poor, we assessed the role of the P-glycoprotein (Mdr1a/b) and breast cancer resistance protein (Bcrp) ATP binding cassette (ABC) transporters, which drive the efflux of lipophilic compounds from the brain thereby restricting the uptake of lipophilic drugs. We used a triple transgenic mouse model lacking two isoforms of P-glycoprotein (Mdr1a/1b) and the Bcrp.

Results

There was a significant increase in the uptake into the brain of two hydrophobic TPP compounds, MitoQ and MitoF, in the triple transgenics following intra venous (IV) administration compared to control mice. Greater amounts of the hydrophobic TPP compounds were also retained in the liver of transgenic mice compared to controls. The uptake into the heart, white fat, muscle and kidneys was comparable between the transgenic mice and controls.

Conclusion

Efflux of hydrophobic TPP compounds by ABC transporters contributes to their lowered uptake into the brain and liver.

General significance

These findings suggest that strategies to bypass ABC transporters in the BBB will enhance delivery of mitochondria-targeted antioxidants, probes and pharmacophores to the brain.  相似文献   
1000.
Iron (Fe) availability is a major limiting factor for primary production in aquatic environments. Cyanobacteria respond to Fe deficiency by derepressing the isiAB operon, which encodes the antenna protein IsiA and flavodoxin. At nanomolar Fe concentrations, a PSI-IsiA supercomplex forms, comprising a PSI trimer encircled by two complete IsiA rings. This PSI-IsiA supercomplex is the largest photosynthetic membrane protein complex yet isolated. This study presents a detailed characterization of this complex using transmission electron microscopy and ultrafast fluorescence spectroscopy. Excitation trapping and electron transfer are highly efficient, allowing cyanobacteria to avoid oxidative stress. This mechanism may be a major factor used by cyanobacteria to successfully adapt to modern low-Fe environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号