首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   29篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2020年   8篇
  2019年   4篇
  2018年   10篇
  2017年   6篇
  2016年   16篇
  2015年   21篇
  2014年   23篇
  2013年   35篇
  2012年   32篇
  2011年   25篇
  2010年   18篇
  2009年   16篇
  2008年   20篇
  2007年   23篇
  2006年   18篇
  2005年   18篇
  2004年   24篇
  2003年   15篇
  2002年   15篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有421条查询结果,搜索用时 250 毫秒
331.
Endogenously occurring damage to DNA is a contributing factor to the onset of several genetic diseases, including cancer. Monitoring urinary levels of DNA adducts is one approach to assess genomic exposure to endogenous damage. However, metabolism and alternative routes of elimination have not been considered as factors that may limit the detection of DNA adducts in urine. We recently demonstrated that the peroxidation-derived deoxyguanosine adduct, 3-(2-deoxy-beta-D-erythropentofuranosyl)-pyrimido[1,2-alpha]purine-10(3H)-one (M1dG), is subject to enzymatic oxidation in vivo resulting in the formation of a major metabolite, 6-oxo-M1dG. Based on the administration of [14C]M1dG (22 microCi/kg) to Sprague-Dawley rats (n=4), we now report that 6-oxo-M1dG is the principal metabolite of M1dG in vivo representing 45% of the total administered dose. When [14C]6-oxo-M1dG was administered to Sprague-Dawley rats, 6-oxo-M1dG was recovered unchanged (>97% stability). These studies also revealed that M1dG and 6-oxo-M1dG are subject to biliary elimination. Additionally, both M1dG and 6-oxo-M1dG exhibited a long residence time following administration (>48 h), and the major species observed in urine at late collections was 6-oxo-M1dG.  相似文献   
332.
Three nucleic acid-protein complexes of 1:1 stoichiometry were analyzed by surface plasmon resonance on a Biacore biosensor to test whether or not proteins and nucleic acids yielded similar refractive index increments on binding. The expected maximum response in resonance units, (RU(exp))(max), and the observed one, (RU(obs))(max), on saturation of immobilized targets by interacting partners were compared to determine the ratio of (deltan/deltaC)(protein) to (deltan/deltaC)(nucleic acid), where n is the refractive index at the surface and C is the concentration of one partner. Our results suggest that proteins and nucleic acids behave similarly and that the discrepancy between the expected and observed maximum responses for such complexes reflects inaccurate evaluation of the binding responses. Therefore, no correction of the instrument response is required for protein and nucleic acid interaction studies on a Biacore biosensor.  相似文献   
333.
Etheno DNA adducts are a prevalent type of DNA damage caused by vinyl chloride (VC) exposure and oxidative stress. Etheno adducts are mutagenic and may contribute to the initiation of several pathologies; thus, elucidating the pathways by which they induce cellular transformation is critical. Although N2,3-ethenoguanine (N2,3-εG) is the most abundant etheno adduct, its biological consequences have not been well characterized in cells due to its labile glycosidic bond. Here, a stabilized 2′-fluoro-2′-deoxyribose analog of N2,3-εG was used to quantify directly its genotoxicity and mutagenicity. A multiplex method involving next-generation sequencing enabled a large-scale in vivo analysis, in which both N2,3-εG and its isomer 1,N2-ethenoguanine (1,N2-εG) were evaluated in various repair and replication backgrounds. We found that N2,3-εG potently induces G to A transitions, the same mutation previously observed in VC-associated tumors. By contrast, 1,N2-εG induces various substitutions and frameshifts. We also found that N2,3-εG is the only etheno lesion that cannot be repaired by AlkB, which partially explains its persistence. Both εG lesions are strong replication blocks and DinB, a translesion polymerase, facilitates the mutagenic bypass of both lesions. Collectively, our results indicate that N2,3-εG is a biologically important lesion and may have a functional role in VC-induced or inflammation-driven carcinogenesis.  相似文献   
334.
The first microscopical alterations along adjuvant arthritis induction in rats seem to appear in the synovium. We have studied the protein synthesis pattern of the cells constitutively present in synovial membrane (synoviocytes) and have found an impairment of synthesis of some protein when synoviocytes are derived from adjuvant arthritic rats. One of these polypeptides was identified β tubulin by two-dimensional gel electrophoresis, a membrane transfer assay using a specific monoclonal antibody and peptide mapping. We postulate that a repressed synthesis of tubulin may be an initial step in the triggering of the disease, since the effect was evident at pre-arthritis stages, when infiltration by inflammatory cells had not yet occurred.  相似文献   
335.
Rats receiving injections of specific antagonists of dopamine receptors (SCH 23390 for D1, haloperidol for D2, and haloperidol+SCH 23390) once daily for 21 days develop a selective supersensitivity of the blocked receptors. To study the molecular correlates of these adaptive changes, we evaluated the involvement of GTP-binding proteins in the development of supersensitivity of dopamine receptors. By means of adenylate cyclase studies, we tested whether any of the treatments modified the functional response to GTP in striata dissected from control and treated rats. Our data show that the chronic blockade of D1 and/or D2 receptors potentiates both basal and dopamine receptor-stimulated adenylate cyclase activity in response to GTP. D1 receptor up-regulation correlates with an increased adenylate cyclase response to GTP, whereas D2 receptor up-regulation is accompanied by an enhanced GTP-induced inhibition of enzyme activity, in both basal and receptor-activated conditions. This potentiation does not seem to match the changes in mRNA content of Gs and Gi alpha subunits. Unexpectedly, however, a significant increase in Gi alpha subunit mRNA was found after the chronic blockade of D1 receptors; this result could be explained by cross-regulation between GTP-binding protein-mediated pathways. This cross-regulation could serve as a protective mechanism whereby cells exposing up-regulated receptors protect themselves from a condition of hyperactivity of the adenylate cyclase enzyme.  相似文献   
336.
Spermine and spermidine enhance the binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]cyclohepten-5,10-imine ([3H]MK-801) to N-methyl-D-aspartate (NMDA) receptors in membranes prepared from rat brain. These polyamines also enhance binding of [3H]MK-801 to NMDA receptors that have been solubilized with deoxycholate. Other polyamines selectively antagonize this effect, a finding indicating that the polyamine recognition site retains pharmacological and structural specificity after solubilization. In the presence of spermidine, an increase in the affinity of the solubilized NMDA receptor for [3H]MK-801 is observed. However, the rates of both association and dissociation of [3H]MK-801 binding to solubilized NMDA receptors are accelerated when assays are carried out in the presence of spermidine. When kinetic data are transformed, pseudo-first-order association and first-order dissociation plots are nonlinear in the presence of spermidine, an observation indicating a complex binding mechanism. Effects of spermidine on solubilized NMDA receptors are similar to effects previously described in studies of membrane-bound receptors. The data indicate that polyamines interact with a specific recognition site that remains associated with other components of the NMDA receptor complex after detergent solubilization.  相似文献   
337.
Mutants of Salmonella typhimurium containing 1 to 2% of wild-type ribonuclease I activity were isolated. The rns mutation had no effect on the polarity of mutations in the S. typhimurium histidine operon. Even in the presence of an rns mutation, it was not possible to obtain strong suppressors of the polarity of two polar mutations in the his operon.  相似文献   
338.
A strain of Cyanidium caldarium has been studied which is able to grow in darkness using amino acids as sole energy sources. During growth ammonia was released into the external medium as a catabolic end product. With either threonine or glutamate similar rates of ammonia formation and similar kinetics of growth were observed. These observations suggest that the amounts of energy made available for cell growth from the two amino acids are equivalent.Deamination of threonine and glutamate by whole cells exhibited similar temperature-dependence profiles and similar Arrhenius energies of activation. Thus it is suggested that a partially common pathway is involved in the catabolism of these amino acids. Threonine dehydrase may play a role in this pathway.The threonine dehydrase of C. caldarium was inhibited by isoleucine and activated by valine. In the absence of isoleucine no cooperative effect of threonine was observed.Succinate or 2-ketoglutarate supported a faster growth than did amino acids. Growth tests in the presence of both a krebs cycle intermediate and an amino acid have shown that the oxidative metabolism of amino acids is in some way controlled by the more suitable energy sources, presumably through catabolite inhibition and catabolite repression.  相似文献   
339.
The addition of serum to density-inhibited human fibroblast cultures induced a wave of DNA synthesis, measured as [3H] thymidine incorporation into acid-precipitable material, beginning after 8–12 hr and reaching maximum levels at 16–24 hr. Addition of dibutyryl-3′ : 5′-cyclic AMP (DBcAMP) together with serum inhibited [3H] thymidine incorporation by 75–95%. When DBcAMP was added for the first 4 hr of serum stimulation and then removed, the wave of DNA synthesis was not delayed. This suggested that serum could induce DNA synthesis even though cyclic AMP concentrations were maintained at high levels by DBcAMP during this initial period. These results are inconsistent with the hypothesis that it is the immediate transient reduction in 3′ : 5′-cyclic AMP concentration following the addition of serum that triggers DNA synthesis. By contrast, DBcAMP added 8 hr after serum inhibited [3H] thymidine incorporation to the same extent as DBcAMP added at the same time as serum. This indicated that a step essential for DNA synthesis and occurring late in G1 was inhibited by high concentrations of 3′ : 5′-cyclic AMP.  相似文献   
340.
In the unicellular alga Cyanidium caldarium nitrate utilization is strongly inhibited by ammonium and it is resumed when ammonium has been depleted. In the presence of L-methionine-DL-sulphoximine (MSX), which prevents ammonium assimilation through a specific irreversible inhibition of glutamine synthetase, nitrate reduction is no longer inhibited by ammonium, and most of the ammonium derived from nitrate reduction is excreted into the external medium. However, in the presence of MSX, nitrate reduction to ammonium proceeds at a reduced rate (45 to 70% of the control); this is particularly marked at low nitrate concentration. It is hypothesized that either MSX or accumulating ammonium bring about decrease in the rate of nitrate entry into the cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号