首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   29篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2020年   8篇
  2019年   4篇
  2018年   10篇
  2017年   6篇
  2016年   16篇
  2015年   21篇
  2014年   23篇
  2013年   35篇
  2012年   32篇
  2011年   25篇
  2010年   18篇
  2009年   16篇
  2008年   20篇
  2007年   23篇
  2006年   18篇
  2005年   18篇
  2004年   24篇
  2003年   15篇
  2002年   15篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有421条查询结果,搜索用时 203 毫秒
321.
Osteopontin (OPN), a senescence‐associated secretory phenotype factor, is increased in patients with nonalcoholic fatty liver disease (NAFLD). Cellular senescence has been associated with age‐dependent hepatosteatosis. Thus, we investigated the role of OPN in the age‐related hepatosteatosis. For this, human serum samples, animal models of aging, and cell lines in which senescence was induced were used. Metabolic fluxes, lipid, and protein concentration were determined. Among individuals with a normal liver, we observed a positive correlation between serum OPN levels and increasing age. This correlation with age, however, was absent in patients with NAFLD. In wild‐type (WT) mice, serum and liver OPN were increased at 10 months old (m) along with liver p53 levels and remained elevated at 20m. Markers of liver senescence increased in association with synthesis and concentration of triglycerides (TG) in 10m OPN‐deficient (KO) hepatocytes when compared to WT hepatocytes. These changes in senescence and lipid metabolism in 10m OPN‐KO mice liver were associated with the decrease of 78 kDa glucose‐regulated protein (GRP78), induction of ER stress, and the increase in fatty acid synthase and CD36 levels. OPN deficiency in senescent cells also diminished GRP78, the accumulation of intracellular TG, and the increase in CD36 levels. In 20m mice, OPN loss led to increased liver fibrosis. Finally, we showed that OPN expression in vitro and in vivo was regulated by p53. In conclusion, OPN deficiency leads to earlier cellular senescence, ER stress, and TG accumulation during aging. The p53‐OPN axis is required to inhibit the onset of age‐related hepatosteatosis.  相似文献   
322.
323.
324.
Biomonitoring underpins the environmental assessment of freshwater ecosystems and guides management and conservation. Current methodology for surveys of (macro)invertebrates uses coarse taxonomic identification where species‐level resolution is difficult to obtain. Next‐generation sequencing of entire assemblages (metabarcoding) provides a new approach for species detection, but requires further validation. We used metabarcoding of invertebrate assemblages with two fragments of the cox1 “barcode” and partial nuclear ribosomal (SSU) genes, to assess the effects of a pesticide spill in the River Kennet (southern England). Operational taxonomic unit (OTU) recovery was tested under 72 parameters (read denoising, filtering, pair merging and clustering). Similar taxonomic profiles were obtained under a broad range of parameters. The SSU marker recovered Platyhelminthes and Nematoda, missed by cox1, while Rotifera were only amplified with cox1. A reference set was created from all available barcode entries for Arthropoda in the BOLD database and clustered into OTUs. The River Kennet metabarcoding produced matches to 207 of these reference OTUs, five times the number of species recognized with morphological monitoring. The increase was due to the following: greater taxonomic resolution (e.g., splitting a single morphotaxon “Chironomidae” into 55 named OTUs); splitting of Linnaean binomials into multiple molecular OTUs; and the use of a filtration‐flotation protocol for extraction of minute specimens (meiofauna). Community analyses revealed strong differences between “impacted” vs. “control” samples, detectable with each gene marker, for each major taxonomic group, and for meio‐ and macrofaunal samples separately. Thus, highly resolved taxonomic data can be extracted at a fraction of the time and cost of traditional nonmolecular methods, opening new avenues for freshwater invertebrate biodiversity monitoring and molecular ecology.  相似文献   
325.
326.
Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP‐KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP‐KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP‐KO mice was ascribed to an impairment in D‐serine homeostasis. Extracellular D‐serine concentration was significantly reduced in APP‐KO mice, coupled with an increase of total D‐serine. Strikingly, chronic treatment with exogenous D‐serine normalized D‐serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP‐KO mice. The cognitive deficit observed in APP‐KO mice was also rescued by D‐serine treatment. These data suggest that APP regulates homeostasis of D‐serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.  相似文献   
327.
Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell‐based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non‐invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)‐free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin‐based Cultispher®S microcarriers and xeno‐free culture medium for the expansion of umbilical cord matrix (UCM)‐derived MSC. This system enabled the production of 2.4 (±1.1) x105 cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)‐fold increase in cell number. The established protocol was then implemented in a stirred‐tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier‐based stirred culture system, using xeno‐free culture medium that suits the intrinsic features of UCM‐derived MSC represents an important step towards a GMP compliant large‐scale production platform for these promising cell therapy candidates.  相似文献   
328.
329.
The flight activity of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) was monitored over a 3‐year period in greenhouses containing tomato and zucchini crops. The environmental factors affecting its flight activity and dispersal were analyzed. Among the climatic variables, temperature had a positive impact on T. vaporariorum flight, whereas relative humidity had only a weak effect. More flights were made during the morning and afternoon, with fewer flights occurring when the temperature was above 25°C in greenhouses containing zucchini or above 30°C in those containing tomato; no flights were recorded when the temperature was 12.30°C in either setting. Flight typology, classified as short, long or dispersal, and covering a few centimeters to more than 2–3 m, was influenced by the vegetative condition of the plants. As the plants aged and declined in condition, the number of short flights decreased, whereas the number of long and dispersal flights increased. Based on these results, we can conclude that the dispersal of T. vaporariorum in greenhouses containing either tomato or zucchini crops is generally influenced by environmental factors, which also affect the type of flight, with a trade‐off between short and long dispersal flights. However, adult dispersal is driven not only by temperature, but also by other factors, such as conspecific density and time of the day. Therefore, producers must consider such factors when aiming to reduce the dispersal of pest insects within greenhouses and, thus, to maintain the productivity of their crops.  相似文献   
330.
Carnosine is an endogenously synthesized dipeptide composed of beta-alanine and L-histidine. It acts as a free radical scavenger and possesses antioxidant properties. Carnosine reduces proinflammatory and profibrotic cytokines such as transforming growth factor-beta (TGF-beta), IL-1, and TNF-alpha in different experimental settings. In the present study, we investigated the efficacy of carnosine on the animal model of bleomycin-induced lung injury. Mice were subjected to intratracheal administration of bleomycin and were assigned to receive carnosine daily by an oral bolus of 150 mg/kg. One week after fibrosis induction, bronchoalveolar lavage (BAL) cell counts and TGF-beta levels, lung histology, and immunohistochemical analyses for myeloperoxidase, TGF-beta, inducible nitric oxide synthase, nitrotyrosine, and poly(ADP-ribose) polymerase were performed. Finally, apoptosis was quantified by terminal deoxynucleotidyltransferase-mediated UTP end-labeling assay. After bleomycin administration, carnosine-treated mice exhibited a reduced degree of lung damage and inflammation compared with wild-type mice, as shown by the reduction of 1) body weight, 2) mortality rate, 3) lung infiltration by neutrophils (myeloperoxidase activity and BAL total and differential cell counts), 4) lung edema, 5) histological evidence of lung injury and collagen deposition, 6) lung myeloperoxidase, TGF-beta, inducible nitric oxide synthase, nitrotyrosine, and poly(ADP-ribose) polymerase immunostaining, 7) BAL TGF-beta levels, and 8) apoptosis. Our results indicate that orally administered carnosine is able to prevent bleomycin-induced lung injury likely through its direct antioxidant properties. Carnosine is already available for human use. It might prove useful as an add-on therapy for the treatment of fibrotic disorders of the lung where oxidative stress plays a role, such as for idiopathic pulmonary fibrosis, a disease that still represents a major challenge to medical treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号