首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5760篇
  免费   559篇
  国内免费   437篇
  2024年   16篇
  2023年   96篇
  2022年   106篇
  2021年   306篇
  2020年   228篇
  2019年   303篇
  2018年   263篇
  2017年   180篇
  2016年   296篇
  2015年   424篇
  2014年   427篇
  2013年   430篇
  2012年   529篇
  2011年   444篇
  2010年   331篇
  2009年   281篇
  2008年   332篇
  2007年   288篇
  2006年   233篇
  2005年   175篇
  2004年   166篇
  2003年   157篇
  2002年   124篇
  2001年   97篇
  2000年   64篇
  1999年   84篇
  1998年   45篇
  1997年   38篇
  1996年   41篇
  1995年   29篇
  1994年   29篇
  1993年   34篇
  1992年   35篇
  1991年   29篇
  1990年   23篇
  1989年   13篇
  1988年   17篇
  1987年   8篇
  1986年   7篇
  1985年   11篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1976年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有6756条查询结果,搜索用时 156 毫秒
81.
82.
83.
84.
Interleukin‐10 (IL‐10) displays well‐documented anti‐inflammatory effects, but its effects on osteoblast differentiation have not been investigated. In this study, we found IL‐10 negatively regulates microRNA‐7025‐5p (miR‐7025‐5p), the down‐regulation of which enhances osteoblast differentiation. Furthermore, through luciferase reporter assays, we found evidence that insulin‐like growth factor 1 receptor (IGF1R) is a miR‐7025‐5p target gene that positively regulates osteoblast differentiation. In vivo studies indicated that the pre‐injection of IL‐10 leads to increased bone formation, while agomiR‐7025‐5p injection delays fracture healing. Taken together, these results indicate that IL‐10 induces osteoblast differentiation via regulation of the miR‐7025‐5p/IGF1R axis. IL‐10 therefore represents a promising therapeutic strategy to promote fracture healing.  相似文献   
85.
The precision evaluation of prognosis is crucial for clinical treatment decision of bladder cancer (BCa). Therefore, establishing an effective prognostic model for BCa has significant clinical implications. We performed WGCNA and DEG screening to initially identify the candidate genes. The candidate genes were applied to construct a LASSO Cox regression analysis model. The effectiveness and accuracy of the prognostic model were tested by internal/external validation and pan‐cancer validation and time‐dependent ROC. Additionally, a nomogram based on the parameter selected from univariate and multivariate cox regression analysis was constructed. Eight genes were eventually screened out as progression‐related differentially expressed candidates in BCa. LASSO Cox regression analysis identified 3 genes to build up the outcome model in E‐MTAB‐4321 and the outcome model had good performance in predicting patient progress free survival of BCa patients in discovery and test set. Subsequently, another three datasets also have a good predictive value for BCa patients' OS and DFS. Time‐dependent ROC indicated an ideal predictive accuracy of the outcome model. Meanwhile, the nomogram showed a good performance and clinical utility. In addition, the prognostic model also exhibits good performance in pan‐cancer patients. Our outcome model was the first prognosis model for human bladder cancer progression prediction via integrative bioinformatics analysis, which may aid in clinical decision‐making.  相似文献   
86.
87.
N6-methyladenosine (m6A) modification has been reported in various diseases and implicated in increasing numbers of biological processes. However, previous studies have not focused on the role of m6A modification in fracture healing. Here, we demonstrated that m6A modifications are decreased during fracture healing and that methyltransferase-like 3 (METTL3) is the main factor involved in the abnormal changes in m6A modifications. Down-regulation of METTL3 promotes osteogenic processes both in vitro and in vivo, and this effect is recapitulated by the suppression of miR-7212-5p maturation. Further studies have shown that miR-7212-5p inhibits osteoblast differentiation in MC3T3-E1 cells by targeting FGFR3. The present study demonstrated an important role of the METTL3/miR-7212-5p/FGFR3 axis and provided new insights on m6A modification in fracture healing.  相似文献   
88.
89.
Rational design and construction of bifunctional electrocatalysts with excellent activity and durability is imperative for water splitting. Herein, a novel top‐down strategy to realize a hierarchical branched Mo‐doped sulfide/phosphide heterostructure (Mo‐Ni3S2/NixPy hollow nanorods), by partially phosphating Mo‐Ni3S2/NF flower clusters, is proposed. Benefitting from the optimized electronic structure configuration, hierarchical branched hollow nanorod structure, and abundant heterogeneous interfaces, the as‐obtained multisite Mo‐Ni3S2/NixPy/NF electrode has remarkable stability and bifunctional electrocatalytic activity in the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER) in 1 m KOH solutions. It possesses an extremely low overpotential of 238 mV at the current density of 50 mA cm?2 for OER. Importantly, when assembled as anode and cathode simultaneously, it merely requires an ultralow cell voltage of 1.46 V to achieve the current density of 10 mA cm?2, with excellent durability for over 72 h, outperforming most of the reported Ni‐based bifunctional materials. Density functional theory results further confirm that the doped heterostructure can synergistically optimize Gibbs free energies of H and O‐containing intermediates (OH*, O*, and OOH*) during HER and OER processes, thus accelerating the catalytic kinetics of electrochemical water splitting. This work demonstrates the importance of the rational combination of metal doping and interface engineering for advanced catalytic materials.  相似文献   
90.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号