首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68441篇
  免费   18280篇
  国内免费   3305篇
  2024年   64篇
  2023年   480篇
  2022年   686篇
  2021年   2423篇
  2020年   3500篇
  2019年   5305篇
  2018年   5374篇
  2017年   5195篇
  2016年   5758篇
  2015年   6607篇
  2014年   6692篇
  2013年   7326篇
  2012年   5783篇
  2011年   4995篇
  2010年   5179篇
  2009年   3720篇
  2008年   3047篇
  2007年   2381篇
  2006年   2114篇
  2005年   1904篇
  2004年   1568篇
  2003年   1407篇
  2002年   1224篇
  2001年   1025篇
  2000年   835篇
  1999年   785篇
  1998年   440篇
  1997年   426篇
  1996年   408篇
  1995年   368篇
  1994年   373篇
  1993年   262篇
  1992年   354篇
  1991年   299篇
  1990年   238篇
  1989年   181篇
  1988年   162篇
  1987年   172篇
  1986年   132篇
  1985年   127篇
  1984年   92篇
  1983年   73篇
  1982年   63篇
  1981年   45篇
  1980年   37篇
  1979年   43篇
  1977年   32篇
  1975年   29篇
  1974年   34篇
  1972年   33篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
81.
1. Time perception is seldom studied in invertebrates, with the limited experimental evidence being insufficient to provide a comprehensive pattern of the capacity of invertebrates to measure time and use it in decision‐making processes. 2. In this study, it was hypothesized that insect parasitoids have evolved the capacity to measure time precisely and to use it to optimize foraging decisions related to host exploitation. To examine time perception in females of the gregarious egg parasitoid Trichogramma euproctidis, the present study used their ability to adjust their investment (number of eggs laid) in a host to the initial transit duration (interval between the first contact with the host and the following contact with the substrate). Females utilize this method to assess host egg size, as a large egg necessarily requires more time to evaluate than a small host. In this study, the initial transit duration for a given sized egg was artificially extended by suspending it. 3. For similar sized hosts, female T. euproctidis significantly increased both oviposition duration and progeny allocation following a longer initial transit duration. 4. These results demonstrate the intrinsic capacity of this parasitoid to measure time and to adjust their progeny investment accordingly. This is believed to be one of the few demonstrations of a retrospective measure of time in an invertebrate.  相似文献   
82.
The nocturnally active weakly electric fish Gnathonemus petersii is known to employ active electrolocation for the detection of objects and for orientation in its environment. The fish emits pulse‐type electric signals with an electric organ and perceives these signals with more than 3,000 epidermal electroreceptor organs, the mormyromasts, which are distributed over the animal's skin surface. In this study, we measured the metric dimensions of the mormyromasts from different body regions to find structural and functional specialization of the various body parts. We focused on the two foveal regions of G. petersii, which are located at the elongated and movable chin (the Schnauzenorgan; SO) and at the nasal region (NR), the skin region between the mouth and the nares. These two foveal regions were compared to the dorsal part (back) of the fish, which contains typical nonfoveal mormyromasts. While the gross anatomy of the mormyromasts from all skin regions is similar, the metric dimensions of the main substructures differed. The mormyromasts at the SO are the smallest and contain the smallest receptor cells. In addition, the number of receptor cells per organ is lowest at the SO. In contrast, at the back the biggest receptor organs with the highest amount of receptor cells per organ occur. The mormyromasts at the NR are in several respects intermediate between those from the back and the SO. However, mormyromasts at the NR are longer than those at all other skin regions, the canal leading from the receptor pore to the inner chambers were the longest and the overlaying epidermal layers are the thickest. These results show that mormyromasts and the epidermis they are embedded in at both foveal regions differ specifically from those found on the rest of the body. The morphological specializations lead to functional specialization of the two foveae. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
83.
84.
doi:10.1111/j.1741‐2358.2009.00333.x
Effect of microwave treatment on the shear bond strength of different types of commercial teeth to acrylic resin Objective: The purpose of this study was to verify the effect of microwave treatment on the shear bond strength of commercial types of teeth to acrylic resin, when the glossy ridge laps were unmodified (groups 1 and 5), bur abraded (groups 2 and 6), bur grooved (groups 3 and 7) or etched by monomer (groups 4 and 8). Background: Controversial findings have shown that mechanical or chemical changes in ridge‐lap surface of the tooth increase or decrease the bond strength between tooth and acrylic resin, and the microwave disinfection may cause different changes on this bond strength. Materials and methods: Eighty specimens (n = 10) were made with the acrylic resin bonded to tooth glossy ridge lap, polymerised in water at 74°C for 9 h, and deflasked after flask cooling. Specimens of the groups 5, 6, 7 and 8 were individually immersed in 150 ml of water and submitted to microwave treatment in an oven at 650 W for 3 min. Control specimens (groups 1, 2, 3 and 4) were not microwave treated. Shear bond strength test was performed in an Instron machine with a cross‐speed of 1 mm/min. Collected data were submitted to anova and Tukey’s test (α = 0.05). Results: Microwave treatment decreased the shear bond strength values of the tooth/resin bond. In the microwaved and non‐microwaved procedures, mechanical retention improved the shear bond strength when compared with the control and monomer treatments. Conclusion: Shear bond strength of the tooth/resin bond was influenced by the microwave treatment and different commercial teeth association, and was lower for the Biotone tooth.  相似文献   
85.
86.
87.
88.
Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the metabolic pathways in which it may participate? Answering such a question is a first important step in understanding a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654 enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some further analysis of the pathway systems.  相似文献   
89.
90.
Intestinal mucosal injuries are directly or indirectly related to many common acute and chronic diseases. Long non-coding RNAs (lncRNAs) are expressed in many diseases, including intestinal mucosal injury. However, the relationship between lncRNAs and intestinal mucosal injury has not been determined. Here, we investigated the functions and mechanisms of action of lncRNA Bmp1 on damaged intestinal mucosa. We found that Bmp1 was increased in damaged intestinal mucosal tissue and Bmp1 overexpression was able to alleviate intestinal mucosal injury. Bmp1 overexpression was found to influence cell proliferation, colony formation, and migration in IEC-6 or HIEC-6 cells. Moreover, miR-128-3p was downregulated after Bmp1 overexpression, and upregulation of miR-128-3p reversed the effects of Bmp1 overexpression in IEC-6 cells. Phf6 was observed to be a target of miR-128-3p. Furthermore, PHF6 overexpression affected IEC-6 cells by activating PI3K/AKT signaling which was mediated by the miR-128-3p/PHF6 axis. In conclusion, Bmp1 was found to promote the expression of PHF6 through the sponge miR-128-3p, activating the PI3K/AKT signaling pathway to promote cell migration and proliferation.Subject terms: Cell growth, Cell migration  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号