首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   19篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   14篇
  2014年   10篇
  2013年   11篇
  2012年   13篇
  2011年   13篇
  2010年   11篇
  2009年   9篇
  2008年   11篇
  2007年   8篇
  2006年   6篇
  2005年   9篇
  2004年   13篇
  2003年   1篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   11篇
  1998年   13篇
  1997年   3篇
  1996年   8篇
  1994年   5篇
  1993年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1970年   3篇
排序方式: 共有211条查询结果,搜索用时 31 毫秒
121.
Geminiviruses are plant viruses with circular single-stranded DNA (ssDNA) genomes encapsidated in double icosahedral particles. Tomato leaf curl geminivirus (ToLCV) requires coat protein (CP) for the accumulation of ssDNA in protoplasts and in plants but not for systemic infection and symptom development in plants. In the absence of CP, infected protoplasts accumulate reduced levels of ssDNA and increased amounts of double-stranded DNA (dsDNA), compared to accumulation in the presence of wild-type virus. To determine whether the gene 5 protein (g5p), a ssDNA binding protein from Escherichia coli phage M13, could restore the accumulation of ssDNA, ToLCV that lacked the CP gene was modified to express g5p or g5p fused to the N-terminal 66 amino acids of CP (CP66:6G:g5). The modified viruses led to the accumulation of wild-type levels of ssDNA and high levels of dsDNA. The accumulation of ssDNA was apparently due to stable binding of g5p to viral ssDNA. The high levels of dsDNA accumulation during infections with the modified viruses suggested a direct role for CP in viral DNA replication. ToLCV that produced the CP66:6G:g5 protein did not spread efficiently in Nicotiana benthamiana plants, and inoculated plants developed only very mild symptoms. In infected protoplasts, the CP66:6G:g5 protein was immunolocalized to nuclei. We propose that the fusion protein interferes with the function of the BV1 movement protein and thereby prevents spread of the infection.  相似文献   
122.
Peripherin is an intermediate filament protein expressed in restricted populations of neurons. Our previous study of the chromatin structure of the mouse peripherin gene in cells that do or do not express peripherin suggested that the region located between -1,500 and +800 bp of the gene could be involved in its cell specificity. In the present work, we performed an in vitro functional analysis of the 5' flanking region of the mouse peripherin gene and observed that this region up to 9 kb contained both enhancer and inhibiting activities; however, it was insufficient to achieve a complete extinction of reporter gene expression in peripherin-negative cells. Furthermore, analysis of the first three introns with the 5' flanking sequences of the gene showed that intron I greatly increased specificity of the gene expression. Intron I also conferred the same properties to thymidine kinase heterologous promoter. DNase I footprinting experiments performed with intron I revealed at least two protected regions (Inl A and Inl B). Inl A encompasses an AP-2-like binding site that interacted with both neuroblast and fibroblast nuclear factors, as well as with the recombinant AP-2alpha protein. However, gel shift experiments suggested that the interacting nuclear factors are distinct from AP-2alpha itself and probably belong to the AP-2 family. Inl B perfectly matched the consensus binding site for Sp1 and specifically interacted with nuclear protein factors that showed the same binding properties as the Sp1 family members. Fine deletion analysis of intron I indicated that the Inl A element alone is responsible for its enhancing properties, whereas a region located between +789 and +832 gives to intron I its silencer activity.  相似文献   
123.
124.
125.
126.

Background  

Chondrosarcoma responds poorly to adjuvant therapy and new, clinically relevant animal models are required to test targeted therapy.  相似文献   
127.
Particle bombardment and the genetic enhancement of crops: myths and realities   总被引:14,自引:0,他引:14  
DNA transfer by particle bombardment makes use of physical processes to achieve the transformation of crop plants. There is no dependence on bacteria, so the limitations inherent in organisms such as Agrobacterium tumefaciens do not apply. The absence of biological constraints, at least until DNA has entered the plant cell, means that particle bombardment is a versatile and effective transformation method, not limited by cell type, species or genotype. There are no intrinsic vector requirements so transgenes of any size and arrangement can be introduced, and multiple gene cotransformation is straightforward. The perceived disadvantages of particle bombardment compared to Agrobacterium-mediated transformation, i.e. the tendency to generate large transgene arrays containing rearranged and broken transgene copies, are not borne out by the recent detailed structural analysis of transgene loci produced by each of the methods. There is also little evidence for major differences in the levels of transgene instability and silencing when these transformation methods are compared in agriculturally important cereals and legumes, and other non-model systems. Indeed, a major advantage of particle bombardment is that the delivered DNA can be manipulated to influence the quality and structure of the resultant transgene loci. This has been demonstrated in recently reported strategies that favor the recovery of transgenic plants containing intact, single-copy integration events, and demonstrating high-level transgene expression. At the current time, particle bombardment is the most efficient way to achieve plastid transformation in plants and is the only method so far used to achieve mitochondrial transformation. In this review, we discuss recent data highlighting the positive impact of particle bombardment on the genetic transformation of plants, focusing on the fate of exogenous DNA, its organization and its expression in the plant cell. We also discuss some of the most important applications of this technology including the deployment of transgenic plants under field conditions.  相似文献   
128.
129.
  相似文献   
130.

Introduction

Polymorphonuclear leukocytes (PMN) are main effector cells in the acute immune response. While the specific role of PMN in systemic lupus erythematosus (SLE) and autoimmunity is still unclear, their importance in chronic inflammation is gaining more attention. Here we investigate aspects of function, bone marrow release and activation of PMN in patients with SLE.

Methods

The following PMN functions and subsets were evaluated using flow cytometry; (a) production of reactive oxygen species (ROS) after ex vivo stimulation with phorbol 12-myristate 13-acetate (PMA) or Escherichia coli (E. coli); (b) capacity to phagocytose antibody-coated necrotic cell material; (c) PMN recently released from bone marrow, defined as percentage of CD10D16low in peripheral blood, and (d) PMN activation markers; CD11b, CD62L and C5aR.

Results

SLE patients (n = 92) showed lower ROS production compared with healthy controls (n = 38) after activation ex vivo. The ROS production was not associated with corticosteroid dose or other immunotherapies. PMA induced ROS production was significantly reduced in patients with severe disease. In contrast, neither ROS levels after E. coli activation, nor the capacity to phagocytose were associated with disease severity. This suggests that decreased ROS production after PMA activation is a sign of changed PMN behaviour rather than generally impaired functions. The CD10CD16low phenotype constitute 2% of PMN in peripheral blood of SLE patients compared with 6.4% in controls, indicating a decreased release of PMN from the bone marrow in SLE. A decreased expression of C5aR on PMN was observed in SLE patients, pointing towards in vivo activation.

Conclusions

Our results indicate that PMN from SLE patients have altered function, are partly activated and are released abnormally from bone marrow. The association between low ROS formation in PMN and disease severity is consistent with findings in other autoimmune diseases and might be considered as a risk factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号