首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124320篇
  免费   8839篇
  国内免费   184篇
  2012年   15058篇
  2011年   16397篇
  2010年   2290篇
  2009年   1083篇
  2008年   12182篇
  2007年   12471篇
  2006年   11435篇
  2005年   10688篇
  2004年   10208篇
  2003年   9513篇
  2002年   8073篇
  2001年   6296篇
  2000年   8092篇
  1999年   3084篇
  1998年   380篇
  1997年   238篇
  1996年   176篇
  1995年   161篇
  1994年   163篇
  1993年   134篇
  1992年   145篇
  1991年   127篇
  1990年   104篇
  1989年   105篇
  1988年   94篇
  1987年   105篇
  1986年   64篇
  1985年   63篇
  1984年   61篇
  1983年   79篇
  1982年   61篇
  1981年   36篇
  1980年   40篇
  1979年   35篇
  1978年   32篇
  1972年   42篇
  1971年   51篇
  1970年   46篇
  1959年   221篇
  1958年   404篇
  1957年   413篇
  1956年   363篇
  1955年   338篇
  1954年   317篇
  1953年   306篇
  1952年   303篇
  1951年   290篇
  1950年   262篇
  1949年   63篇
  1948年   62篇
排序方式: 共有10000条查询结果,搜索用时 387 毫秒
81.
82.
Previously, we reported (a) a positive correlation between the nitrate concentrations in growth medium and ethylene evolved from uninoculated and inoculated alfalfa (Medicago sativa) roots and (b) a negative correlation between ethylene evolution and nodulation. Here, we report that the inhibitory effect of NO3 on nodulation of alfalfa can be eliminated by the ethylene inhibitor aminoethoxyvinylglycine (AVG). This effect was probably related to the strong inhibition (90%) of ethylene biosynthesis caused by AVG in these inoculated and NO3-treated roots. These results support our hypothesis that the inhibitory effect of NO3 is mediated through the phytohormone ethylene. A possible role of endogenous ethylene in the autoregulation of nodulation also is discussed. AVG at 10 micromolar significantly (P < 0.05) increased total nitrogenase activity (acetylene reduction) in 2.5 and 5 millimolar NO3-fed plants probably as a result of the very high stimulation of nodulation.  相似文献   
83.
Leaf discs of four dicotyledonous species, when incubated at temperatures of 4 to 18°C (optimum at 12°C) for 30 or 60 minutes, responded by accumulations of membranes in the chloroplast stroma in the space between the inner membrane of the envelope and the thylakoids. The accumulated membranes, here referred to as the low temperature compartment, were frequently continuous with the envelope membrane and exhibited kinetics of formation consistent with a derivation from the envelope. Results were similar for expanding leaves of garden pea (Pisum sativum), soybean (Glycine max), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum). We suggest that the stromal low temperature compartment may be analogous to the compartment induced to form between the transitional endoplasmic reticulum and the Golgi apparatus at low temperatures. The findings provide evidence for the possibility of a vesicular transfer of membrane constituents between the inner membrane of the chloroplast envelope and the thylakoids of mature chloroplasts in expanding leaves.  相似文献   
84.
85.
The four major components of the wheat monomeric α-amylase inhibitors (WMAI) from wheat, Triticum aestivum, endosperm have been isolated and characterized. Two of them, WMAI-1 and WMAI-2, are highly active against the α-amylase from the insect Tenebrio molitor and their N-terminal amino acid sequences indicate that they are closely related to each other (86% identical residues) and to the other members of the family (subunits of dimeric and tetrameric α-amylase inhibitors and trypsin inhibitors). WMAI-1, which is identical to the previously described 0.28 inhibitor, is encoded by a gene located in the short arm of chromosome 6D and WMAI-2 by a gene in the short arm of chromosome 6B. Components 3 and 4, which have blocked N-terminal residues, have identical internal amino acid sequences and are a separate class of proteins with respect to WMAI-1 and WMAI-2, although their amino acid composition and apparent molecular weights are quite similar. Their inhibitory activity versus α-amylases is either unstable during the purification process or due to contamination with other inhibitors.  相似文献   
86.
Reversible seryl-phosphorylation contributes to the light/dark regulation of C4-leaf phosphoenolpyruvate carboxylase (PEPC) activity in vivo. The specific regulatory residue that, upon in vitro phosphorylation by a maize-leaf protein-serine kinase(s), leads to an increase in catalytic activity and a decrease in malate-sensitivity of the target enzyme has been recently identified as Ser-15 in 32P-phosphorylated/activated dark-form maize PEPC (J-A Jiao, R Chollet [1990] Arch Biochem Biophys 283: 300-305). In order to ascertain whether this N-terminal seryl residue is, indeed, the in vivo regulatory phosphorylation site, [32P]phosphopeptides were isolated and purified from in vivo 32P-labeled maize and sorghum leaf PEPC and subjected to automated Edman degradation analysis. The results show that purified light-form maize PEPC contains 14-fold more 32P-radioactivity than the corresponding dark-form enzyme on an equal protein basis and, more notably, only a single N-terminal serine residue (Ser-15 in maize PEPC and its structural homolog, Ser-8, in the sorghum enzyme) was found to be 32P-phosphorylated in the light or dark. These in vivo observations, combined with the results from our previous in vitro phosphorylation studies (J-A Jiao, R Chollet [1989] Arch Biochem Biophys 269: 526-535; [1990] Arch Biochem Biophys 283: 300-305), demonstrate that an N-terminal seryl residue in C4 PEPC is, indeed, the regulatory site that undergoes light/dark changes in phosphorylation-status and, thus, plays a major, if not cardinal role in the light-induced changes in catalytic and regulatory properties of this cytoplasmic C4-photosynthesis enzyme in vivo.  相似文献   
87.
Kinetin alleviates cycloheximide inhibition and oxygen alleviates chloramphenicol inibition of germination of lettuce seeds (Lactuca sativa L. cv Grand Rapids). The effect is not due to increased but rather a substitution for protein synthesis. A cytokinin and energy supply appear prime requirements for germination.  相似文献   
88.
Free abscisic acid (ABA) in integuments, nucellus, endosperm, and embryo was determined throughout seed development of peach (Prunus persica L. cv Springcrest). Quantification of ABA was performed using combined high performance liquid chromatography-radioimmunoassay based on a monoclonal antibody raised against free (S)-ABA. In the integuments and endosperm, ABA concentration remained constant during the first 100 days after anthesis and rose in the following days when fresh weight was rapidly decreasing. In the nucellus, the ABA concentration variation pattern paralleled that of tissue growth. ABA concentration in the embryo increased constantly with the growth of the tissues to reach a maximum at the last growth stage. The role of ABA in peach seeds is discussed in relation to the development of the different seed tissues.  相似文献   
89.
In vivo measurements of chlorophyll a fluorescence indicate that cold-hardened winter rye (Secale cereale L. cv Musketeer) develops a resistance to low temperature-induced photoinhibition compared with nonhardened rye. After 7.2 hours at 5°C and 1550 micromoles per square meter per second, the ratio of variable fluorescence/maximum fluorescence was depressed by only 23% in cold-hardened rye compared with 46% in nonhardened rye. We have tested the hypothesis that the principal site of this resistance to photoinhibition resides at the level of rye thylakoid membranes. Thylakoids were isolated from cold-hardened and nonhardened rye and exposed to high irradiance (1000-2600 micromoles per square meter per second) at either 5 or 20°C. The photoinhibitory response measured by room temperature fluorescence induction, photosystem II electron transport, photoacoustic spectroscopy, or [14C]atrazine binding indicates that the differential resistance to low temperature-induced photoinhibition in vivo is not observed in isolated thylakoids. Similar results were obtained whether isolated rye thylakoids were photoinhibited or thylakoids were isolated from rye leaves preexposed to a photoinhibitory treatment. Thus, we conclude that increased resistance to low temperature-induced photoinhibition is not a property of thylakoid membranes but is associated with a higher level of cellular organization.  相似文献   
90.
We show that the control of gene expression at the level of elongation and termination of protein synthesis can be observed in vitro. Free cytoplasmic polyribosomes were isolated from maize (Zea mays) root tips, and translated in root tip extracts that had been fractionated with ammonium sulfate to contain elongation factors, and be depleted in initiation factors. The root tip extract performs elongation and termination reactions as efficiently as wheat germ extracts. The translation products of the maize system are the same as made in vivo. The dependence of these in vitro elongation and termination reactions on pH was determined. Total protein synthesis in this system exhibits an optimum at pH ~7.5. However, the pH dependence of rates of synthesis of individual proteins is not at all uniform; many polyribosomes become stalled when translated at low pH. These data were compared with the elongation and termination capacity of polyribosomes isolated from oxygenated and hypoxic root tips (tissue having, respectively, high and low cytoplasmic pH values). We observed an inverse relationship between the relative abundance of many specific translatable mRNAs in polyribosomes of hypoxic root tips, and the relative rates of elongation and termination reactions on the different mRNAs at low pH in vitro. These results suggest that changes in intracellular pH in hypoxic root tips can be sensed directly by the translational machinery and thereby selectively modulate gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号