首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   18篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   4篇
  2006年   7篇
  2005年   7篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有105条查询结果,搜索用时 140 毫秒
11.
The effects of high-pressure treatment on the reaction rates of horseradish peroxidase (HRP) with guaethol or guaiacol as a hydrogen donor were evaluated from direct transmission measurements in a high-pressure optical cell at 435 nm. Peroxidases are known to be very barostable and insensitive to heat. With guaethol the reaction velocity was independent of pressure up to 500 MPa, but with guaiacol the cytochrome c oxidase underwent a mechanism-based irreversible inhibition of catalytic activity when subjected to pressure; in the resting states (fully oxidized or reduced), it was insensitive to pressure. The enzyme inactivation took place with an inactivation rate constant of 5.15 x 10(-1) min(-1) at 500 MPa, 25 degrees C and pH 7. The degree of inactivation was correlated to the concentration of guaiacol. This is the first report on a mechanism-based pressure inactivation of HRP triggered at moderate pressure and temperature and mediated by the hydrogen donor.  相似文献   
12.
Flt3 ligand (FL) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are important growth factors for dendritic cells (DC). Substantial numbers of DC can be generated in vivo following the administration of either factor. We sought to extend our knowledge of the functional properties of these cells including their ability to prime na?ve CD8(+) T cells. In addition, we compared the nature of the DC generated in vivo with the single cytokines to those generated with the combination of FL+polyethylene glycol-modified GM-CSF (pGM-CSF). Treatment with FL+pGM-CSF yielded greater numbers of both CD11b(low) and CD11b(high) DC than with either cytokine alone, and these DC were more efficient at antigen (Ag) capture. The FL+pGM-CSF-generated CD11b(low) DC lacked expression of CD8alpha. Following treatment with LPS in vivo, all DC subsets upregulated CD40, CD80, CD86, and MHC class II expression, but surprisingly Ag capture was not downregulated and some DC subsets retained expression of intracellular MHC class II vesicles. Thus, even after activation in vivo with LPS, DC retained Ag capture properties of immature DC, and Ag presentation/costimulation properties of mature DC. Though all DC subsets stimulated CD4(+) T cell proliferation equivalently, FL-generated DC were more efficient at priming Ag-specific CD8(+) cytolytic T cells than DC generated with either pGM-CSF alone or FL+pGM-CSF, and CD11b(high) DC were more efficient at priming CD8(+) T cells than CD11b(low) DC.  相似文献   
13.
Thy-1, a glycosylphosphatidylinositol-linked integral membrane protein of the immunoglobulin superfamily, is a component of both large dense-core and small clear vesicles in PC12 cells. A majority of this protein, formerly recognized only on the plasma membrane of neurons, is localized to regulated secretory vesicles. Thy-1 is also present in synaptic vesicles in rat central nervous system. Experiments on permeabilized PC12 cells demonstrate that antibodies against Thy-1 inhibit the regulated release of neurotransmitter; this inhibition appears to be independent of any effect on the Ca2+ channel. These findings suggest Thy-1 is an integral component of many types of regulated secretory vesicles, and plays an important role in the regulated vesicular release of neurotransmitter at the synapse.  相似文献   
14.
Inflammatory cell recruitment after myocardial infarction needs to be tightly controlled to permit infarct healing while avoiding fatal complications such as cardiac rupture. Growth differentiation factor-15 (GDF-15), a transforming growth factor-β (TGF-β)-related cytokine, is induced in the infarcted heart of mice and humans. We show that coronary artery ligation in Gdf15-deficient mice led to enhanced recruitment of polymorphonuclear leukocytes (PMNs) into the infarcted myocardium and an increased incidence of cardiac rupture. Conversely, infusion of recombinant GDF-15 repressed PMN recruitment after myocardial infarction. In vitro, GDF-15 inhibited PMN adhesion, arrest under flow and transendothelial migration. Mechanistically, GDF-15 counteracted chemokine-triggered conformational activation and clustering of β(2) integrins on PMNs by activating the small GTPase Cdc42 and inhibiting activation of the small GTPase Rap1. Intravital microscopy in vivo in Gdf15-deficient mice showed that Gdf-15 is required to prevent excessive chemokine-activated leukocyte arrest on the endothelium. Genetic ablation of β(2) integrins in myeloid cells rescued the mortality of Gdf15-deficient mice after myocardial infarction. To our knowledge, GDF-15 is the first cytokine identified as an inhibitor of PMN recruitment by direct interference with chemokine signaling and integrin activation. Loss of this anti-inflammatory mechanism leads to fatal cardiac rupture after myocardial infarction.  相似文献   
15.
We demonstrate a highly parallel strategy to analyze the impact of single nucleotide mutations on protein function. Using our method, it is possible to screen a population and quickly identify a subset of functionally interesting mutants. Our method utilizes a combination of yeast functional complementation, growth competition of mutant pools, and polymerase colonies. A defined mutant human glucose-6-phosphate-dehydrogenase library was constructed which contains all possible single nucleotide missense mutations in the eight-residue glucose-6-phosphate binding peptide of the enzyme. Mutant human enzymes were expressed in a zwf1 (gene encoding yeast homologue) deletion strain of Saccharomyces cerevisiae. Growth rates of the 54 mutant strains arising from this library were measured in parallel in conditions selective for active hG6PD. Several residues were identified which tolerated no mutations (Asp200, His201 and Lys205) and two (Ile199 and Leu203) tolerated several substitutions. Arg198, Tyr202, and Gly204 tolerated only 1-2 specific substitutions. Generalizing from the positions of tolerated and non-tolerated amino acid substitutions, hypotheses were generated about the functional role of specific residues, which could, potentially, be tested using higher resolution/lower throughput methods.  相似文献   
16.
Endothelial cell-selective adhesion molecule (ESAM) is an immunoglobulin-like transmembrane protein associated with endothelial tight junctions (TJ). Based on a yeast two-hybrid screen, we have identified the membrane-associated guanylate kinase protein MAGI-1 as an intracellular binding partner of ESAM. MAGI-1 is a multidomain adaptor protein, which binds to transmembrane, cytoskeletal, and signaling molecules, and has been localized to tight junctions in epithelial cells. MAGI-1 associates with the very C-terminal sequence of ESAM most likely through a PDZ domain-mediated interaction. The direct interaction between ESAM and MAGI-1 was confirmed by pull-down experiments. The two proteins formed stable complexes in transfected Chinese hamster ovary (CHO) cells, which could be immunoisolated. We found MAGI-1 to be associated with cell-cell contacts in human umbilical vein endothelial cells (HUVECs) and in mouse endothelium, where it colocalizes with ESAM. In CHO cells, recruitment of MAGI-1 to cell contacts required the presence of ESAM. Hence, ESAM may be involved in anchoring MAGI-1 at endothelial tight junctions.  相似文献   
17.
18.
Kirsch W  Herbort O  Butz MV  Kunde W 《PloS one》2012,7(4):e34880
We examined whether movement costs as defined by movement magnitude have an impact on distance perception in near space. In Experiment 1, participants were given a numerical cue regarding the amplitude of a hand movement to be carried out. Before the movement execution, the length of a visual distance had to be judged. These visual distances were judged to be larger, the larger the amplitude of the concurrently prepared hand movement was. In Experiment 2, in which numerical cues were merely memorized without concurrent movement planning, this general increase of distance with cue size was not observed. The results of these experiments indicate that visual perception of near space is specifically affected by the costs of planned hand movements.  相似文献   
19.
Dendritic cells (DCs) are bone marrow-derived APCs that display unique properties aimed at stimulating naive T cells. Several members of the TNF/TNFR families have been implicated in T cell functions. In this study, we examined the role that Ox40 costimulation might play on the ability of DCs to regulate CD4(+) and CD8(+) T cell responses in vivo. Administration of anti-mouse Ox40 mAb enhanced the Th response induced by immunization with Ag-pulsed DCs, and introduced a bias toward a Th1 immune response. However, anti-Ox40 treatment enhanced the production of Th2 cytokines in IFN-gamma(-/-) mice after immunization with Ag-pulsed DCs, suggesting that the production of IFN-gamma during the immune response could interfere with the development of Th2 lymphocytes induced by DCs. Coadministration of anti-Ox40 with DCs during Ag rechallenge enhanced both Th1 and Th2 responses induced during a primary immunization with DCs, and did not reverse an existing Th2 response. This suggests that Ox40 costimulation amplifies an ongoing immune response, regardless of Th differentiation potential. In an OVA-TCR class II-restricted adoptive transfer system, anti-Ox40 treatment greatly enhanced the level of cytokine secretion per Ag-specific CD4(+) T cell induced by immunization with DCs. In an OVA-TCR class I-restricted adoptive transfer system, administration of anti-Ox40 strongly enhanced expansion, IFN-gamma secretion, and cytotoxic activity of Ag-specific CD8(+) T cells induced by immunization with DCs. Thus, by enhancing immune responses induced by DCs in vivo, the Ox40 pathway might be a target for immune intervention in therapeutic settings that use DCs as Ag-delivery vehicles.  相似文献   
20.
A mechanism for nitrate transport and reduction   总被引:1,自引:0,他引:1  
It is proposed that a tetrahedron-shaped, transmembrane nitrate reductase tetramer functions as a carrier for nitrate transport. Reduction and transport are thereby brought about by the same enzyme complex. An ATPase is visualized to be closely associated with the nitrate reductase tetramer. The tetramer is apparently oriented such that one monomer is exposed to the outside of the plasmalemma while the other three are exposed to the cytoplasmic side. This orientation yields a reaction mechanism where the transport and reduction of one nitrate ion is accompanied by the transport of two additional nitrate ions (i.e. a 3 : 1 transport-reduction ratio). The proportion of transported nitrate that is reduced is apparently modulated by thiol reversible ADP inhibition of reduction. This inhibition, however, is probably the result of adenylate binding at sites on the proposed nitrate-activated ATPase to which nitrate reductase is tightly coupled. An analogous system consisting of a nitrate reductase dimer that spans a unit membrane plus an ATPase is proposed to be responsible for nitrate transport and reduction in some algae and chloroplasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号