首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   40篇
  2016年   2篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   10篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   10篇
  2003年   8篇
  2002年   3篇
  2001年   10篇
  2000年   10篇
  1999年   8篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   8篇
  1993年   3篇
  1992年   17篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1977年   1篇
  1967年   1篇
排序方式: 共有187条查询结果,搜索用时 281 毫秒
1.
Book review     
Henk J Busscher 《Biofouling》2013,29(2-4):361-362

BIOFILMS II PROCESS ANALYSIS AND APPLICATIONS. Edited by James D Bryers. Wiley Liss Incorporated, New York, 2000; 432 pp; US$ 139; ISBN 0–471–29656–2  相似文献   
2.
Acinetobacter calcoaceticus RAG-1 and MR-481, two standard strains used in microbial adhesion to hydrocarbons (MATH), were characterized by contact angles, pH-dependent zeta potentials, elemental surface composition by X-ray photoelectron spectroscopy (XPS), and molecular composition by infrared spectroscopy (IR). Negatively stained (methylamine tungstate) and ruthenium red-stained cells were studied by transmission electron microscopy to reveal the absence or presence of surface appendages. Despite the fact thatA. calcoaceticus RAG-1 is known to be extremely hydrophobic in MATH, whereas MR-481 is a completely non-hydrophobic mutant, neither XPS nor IR indicated a significant difference in chemical composition of the cell surfaces. Contact angles with polar liquids, water and formamide, were considerably higher on RAG-1 than on MR-481, in accordance with their relative hydrophobicities as measured by MATH. However, no significant differences in contact angles were observed between the two strains with apolar liquids like diiodomethane,-bromonaphthalene, and hexadecane. Fibrous extensions on RAG-1, observed after ruthenium red staining, were absent on the non-hydrophobic mutant MR-481. Tentatively, these extensions could be held responsible for the hydrophobicity ofA. calcoaceticus RAG-1.  相似文献   
3.
To characterize the functional cell surface, the zeta potentials and elemental surface composition of Streptococcus salivarius HB and a range of mutants with known molecular surface structures were determined. Zeta potentials of fully hydrated cells were measured as a function of pH in dilute potassium phosphate solutions, yielding isoelectric points of the strains. Elemental composition (O, C, N, and P) of the outer 2 to 5 nm of the freeze-dried cell surfaces were measured by X-ray photoelectron spectroscopy. An increasing loss of proteinaceous fibrillar surface antigens of the mutants was found to be accompanied by a progressive decrease in the N/C ratio from 0.104 in the parent strain HB to 0.053 in mutant HBC12. Simultaneously, the value of the isoelectric point shifted from 3.0 to 1.3. In a previous study (A.H. Weerkamp, H.C. van der Mei, and J. W. Slot, Infect. Immun. 55:438-455, 1987) on the cell surfaces of the same strains, it was shown that removal of fibrils led to increased exposure of (lipo)teichoic acid at the surface, which explains the low isoelectric point caused by the low pKa of the phosphate groups.  相似文献   
4.
The adhesion of Streptococcus mitis to solid substrata from phosphate suspensions with various ionic strengths was studied and compared with the adhesion of polystyrene particles. At all ionic strengths, the interfacial free energy of adhesion governed the relative number of bacteria or polystyrene particles adhering at equilibrium, except that in a low-ionic-strength buffer, adhesion occurred less frequently because of increased electrostatic repulsion. Large differences between bacterial and polystyrene particle adhesion were observed, as indicated by the ratio of bacteria to polystyrene particles adhering, which decreased from 30 to 4 with a change from low to high ionic strength.  相似文献   
5.
The hydrophobin SC3p of Schizophyllum commune self-assembles into a 10-nm-thick amphipathic membrane at hydrophilic-hydrophobic interfaces. X-ray photoelectron spectroscopy of the hydrophobic membrane side of SC3p, assembled in vitro, showed an atomic composition similar to the calculated composition of SC3p when glycosylation was taken into account. The atomic composition measured at the hydrophilic membrane side deviated from that at the hydrophobic side and indicated the presence of a lower number of peptide bonds. High levels of S and N were detected only on mycelia carrying hydrophobic aerial hyphae, as expected with assembled SC3p present at the surface of these hyphae.  相似文献   
6.
7.
8.
In this paper, it is suggested that specificity and non-specificity in (oral) microbial adhesion are different expressions for the same phenomena. It is argued that the same basic, physicochemical forces are responsible for so-called 'non-specific' and 'specific' binding and that from a physico-chemical point of view the distinction between the two is an artificial one. Non-specific interactions arise from Van der Waals and electrostatic forces and hydrogen bonding, and originate from the entire cell. A specific bond consists of a combination of the same type of Van der Waals and electrostatic forces and hydrogen bonding, now originating from highly localized chemical groups, which together form a stereochemical combination. The absence or presence of specific receptor sites on microbial cell surfaces must therefore be reflected in the overall, non-specific surface properties of cells as well. This point is illustrated by showing that glucan-binding lectins on mutans streptococcal strains may determine the pH dependence of the zeta potentials of these cells. When studying microbial adhesion, a non-specific approach may be better suited to explain adhesion to inert substrata, whereas a specific approach may be preferred in case of adhesion to adsorbed protein films. Adhesion is, however, not as important in plaque formation in the human oral cavity as is retention, because low shear force periods, during which adhesion presumably occurs, are followed by high shear force periods, during which adhering cells must withstand these detachment forces. Evidence is provided that such detachment will be through cohesive failure in the pellicle mass, the properties of which are conditioned by the overall, non-specific substratum properties. Therefore, in vivo plaque formation may be more readily explained by a non-specific approach.  相似文献   
9.

Laryngectomized patients use indwelling silicone rubber voice prostheses, placed in a surgically created fistula in between the trachea and the esophagus, for voice and speech rehabilitation. At the esophageal side, these voice prostheses rapidly become colonized by a thick biofilm consisting of a variety of oral and skin bacteria and yeasts, and on average, after 3–4 months a prosthesis has to be replaced. In this study, the influence of caffeinated soft drinks on biofilm formation on silicone rubber voice prostheses has been investigated in a modified Robbins device. Robbins devices were first inoculated with the total cultivable microflora from an explanted voice prosthesis for 3 d, after which the devices were perfused three times daily over a 12 day period with 650 ml of either phosphate buffered saline or carbonated mineral water (controls), caffeinated soft drinks (two types), or a decaffeinated and a sugar‐free version of one of the caffeinated soft drinks. At the end of a day, during the experimental period, the devices were filled with growth medium for 30 min. Both caffeinated soft drinks reduced bacterial prevalence in the biofilms to 1–5% of the control, while yeasts thrived in voice prosthetic biofilms exposed to caffeinated soft drinks. Neither the controls, nor the decaffeinated soft drink, nor the sugar‐free version of this showed these effects on bacterial prevalence.  相似文献   
10.
The integrity of biofilms on voice prostheses used to rehabilitate speech in laryngectomized patients causes unwanted increases in airflow resistance, impeding speech. Biofilm integrity is ensured by extracellular polymeric substances (EPS). This study aimed to determine whether synthetic salivary peptides or mucolytics, including N-acetylcysteine and ascorbic acid, influence the integrity of voice prosthetic biofilms. Biofilms were grown on voice prostheses in an artificial throat model and exposed to synthetic salivary peptides, mucolytics and two different antiseptics (chlorhexidine and Triclosan). Synthetic salivary peptides did not reduce the air flow resistance of voice prostheses after biofilm formation. Although both chlorhexidine and Triclosan reduced microbial numbers on the prostheses, only the Triclosan-containing positive control reduced the air flow resistance. Unlike ascorbic acid, the mucolytic N-acetylcysteine removed most EPS from the biofilms and induced a decrease in air flow resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号