首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   57篇
  国内免费   15篇
  2023年   3篇
  2021年   7篇
  2020年   4篇
  2019年   7篇
  2017年   4篇
  2016年   11篇
  2015年   7篇
  2014年   15篇
  2013年   14篇
  2012年   22篇
  2011年   23篇
  2010年   21篇
  2009年   23篇
  2008年   18篇
  2007年   23篇
  2006年   16篇
  2005年   18篇
  2004年   17篇
  2003年   17篇
  2002年   8篇
  2001年   12篇
  2000年   21篇
  1999年   8篇
  1998年   12篇
  1997年   9篇
  1996年   5篇
  1995年   3篇
  1994年   7篇
  1993年   7篇
  1992年   6篇
  1991年   3篇
  1990年   11篇
  1989年   9篇
  1988年   11篇
  1987年   12篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1979年   4篇
  1978年   2篇
  1977年   7篇
  1976年   10篇
  1975年   3篇
  1973年   2篇
  1972年   2篇
  1968年   2篇
  1966年   2篇
排序方式: 共有487条查询结果,搜索用时 140 毫秒
81.
The histological effect on and stress response of post juvenile Clarias gariepinus exposed to Qua Iboe crude oil and rig wash were investigated. Fish weighing 60–90 g and measuring 16–18 cm were exposed for 7–28 days to 8.00 ml?1 Qua Iboe crude oil and 0.0018 ml–1 rig wash, both being 0.1 of the 96 hr LC50. Blood samples of C. gariepinus were collected every seven days and evaluated for stress by measuring cortisol concentration. The gills and liver were studied and scored for Gill Alteration Index (GAI) and Hepatic Alteration Index (HAI), respectively. There was an increase in cortisol level up to the 7th and 14th day among the group exposed to Qua Iboe crude oil, with a decrease on the 21st and 28th day. The rig wash group increased in cortisol level up to the 7th day and decreased slightly on the 14th day, after which the trend became irregular. The toxic effects of the Qua Iboe crude oil and rig wash were time dependent, as shown by the histopathological alteration index (HAI) of gill and liver. After 28 days of exposure, the gills had irreparable damage due to high frequency of cellular necrosis and degeneration, whereas the liver had from moderate to severe damage due to the high frequency of cellular degeneration and inflammation. Qua Iboe crude oil and rig wash are both toxic to C. gariepinus, therefore their indiscriminate discharge to the environment must be discouraged.  相似文献   
82.
83.
目的观察非酒精性脂肪肝(NAFLD)大鼠肝组织中PPARα基因的表达,并用PPARct激动剂进行干预,探讨其与胰岛素抵抗、脂代谢紊乱的关系。方法大鼠随机分为①正常对照组、②高脂模型组、③PPARα激动剂干预组,利用高脂饮食建立大鼠非酒精性脂肪肝模型。12周后,检测大鼠血脂、肝功能、血糖、胰岛素水平及胰岛素抵抗指数;RT-PCR法分析PPARα基因的表达;观察肝脏的形态学改变。结果PPARa激动剂可降低NAFLD大鼠转氨酶、血脂水平及胰岛素抵抗指数,可促进NAFLD大鼠中PPARa基因的表达;肝脏形态学明显改善。结论PPARα激动剂能改善NAFLD大鼠脂质代谢紊乱,有明显的保肝降酶作用,具有适度的胰岛素增敏作用。PPARα及其配体在NAFLD发病机制及治疗中的进一步深入研究,将为临床防治NAFLD提供新的思路。  相似文献   
84.
目的探讨正常SD雌性大鼠性成熟前不同日龄段的脏器与促黄体生成素(LH)、促卵泡素(FSH)、雌二醇(E2)等性激素的变化及其关系。方法从生产群中取出60窝密度状态一致的SD大鼠,在不同日龄随机选取雌性大鼠,检测15、25、32、40日龄时大鼠体重、主要脏器指数,子宫、卵巢组织变化和15、25、32、40、60日龄大鼠血清LH、FSH、E2水平。结果记录了SD雌性大鼠性成熟前各脏器指数和卵巢、子宫组织变化,结果显示大鼠卵巢、子宫的增长速度大于体重的增长,而其他脏器增速大都小于体重的增长。本研究还记录了血清LH、FSH、E2水平在不同日龄段的变化规律,表明血清LH、E2浓度在32日龄时出现较为明显升高。结论不同日龄大鼠脏器指数的动态变化提示大鼠性器官在性发育早期得到机体的优先发育。血清LH、E2水平在32日龄时有了明显升高,提示性腺轴功能已经激活。60日龄大鼠血清性激素水平的波动类似于动情周期的规律性变化,推测大鼠在60日龄前即已进入性成熟,这些结果将为大鼠性发育的相关研究提供重要的参考数据。  相似文献   
85.
Use of human laboratory analogues of smoking behavior can provide an efficient, cost-effective mechanistic evaluation of a medication signal on smoking behavior, with the result of facilitating translational work in medications development. Although a number of human laboratory models exist to investigate various aspects of smoking behavior and nicotine dependence phenomena, none have yet modeled smoking lapse behavior. The first instance of smoking during a quit attempt (i.e. smoking lapse) is highly predictive of relapse and represents an important target for medications development. Focusing on an abstinence outcome is critical for medication screening as the US Food and Drug Administration approval for cessation medications is contingent on demonstrating effects on smoking abstinence. This paper outlines a three-stage process for the development of a smoking lapse model for the purpose of medication screening. The smoking lapse paradigm models two critical features of lapse behavior: the ability to resist the first cigarette and subsequent ad libitum smoking. Within the context of the model, smokers are first exposed to known precipitants of smoking relapse (e.g. nicotine deprivation, alcohol, stress), and then presented their preferred brand of cigarettes. Their ability to resist smoking is then modeled and once smokers 'give in' and decide to smoke, they participate in a tobacco self-administration session. Ongoing and completed work developing and validating these models for the purpose of medication screening is discussed.  相似文献   
86.
Collagen serves as a structural scaffold and a barrier between tissues, and thus collagen catabolism (collagenolysis) is required to be a tightly regulated process in normal physiology. In turn, the destruction or damage of collagen during pathological states plays a role in tumor growth and invasion, cartilage degradation, or atherosclerotic plaque formation and rupture. Several members of the matrix metalloproteinase (MMP) family catalyze the hydrolysis of collagen triple helical structure. This study has utilized triple helical peptide (THP) substrates and inhibitors to dissect MMP-1 collagenolytic behavior. Analysis of MMP-1/THP interactions by hydrogen/deuterium exchange mass spectrometry followed by evaluation of wild type and mutant MMP-1 kinetics led to the identification of three noncatalytic regions in MMP-1 (residues 285–295, 302–316, and 437–457) and two specific residues (Ile-290 and Arg-291) that participate in collagenolysis. Ile-290 and Arg-291 contribute to recognition of triple helical structure and facilitate both the binding and catalysis of the triple helix. Evidence from this study and prior studies indicates that the MMP-1 catalytic and hemopexin-like domains collaborate in collagen catabolism by properly aligning the triple helix and coupling conformational states to facilitate hydrolysis. This study is the first to document the roles of specific residues within the MMP-1 hemopexin-like domain in substrate binding and turnover. Noncatalytic sites, such as those identified here, can ultimately be utilized to create THP inhibitors that target MMPs implicated in disease progression while sparing proteases with host-beneficial functions.The mechanism of collagenolysis, by which proteases catalyze the hydrolysis of amide bonds within triple helical structures, has been investigated for over 30 years. Despite this lengthy period, few inroads have been made in the identification of specific enzyme residues that facilitate collagenolysis. The primary mammalian collagenases have been identified as cathepsin K and several members of the matrix metalloproteinase (MMP)3 family. Most of the early work on MMP collagenolysis focused on analysis of the sites of hydrolysis, and how unique features within these sites may direct collagen catabolism (1). More recent work has evaluated the active sites and domains of MMPs to better understand the dynamic role that the enzyme plays in collagen hydrolysis (24).Collagenolytic members of the MMP family possess similar domain organizations, including propeptide, catalytic (CAT), linker, and hemopexin-like (HPX) domains (5). Several of these domains and/or regions within them have been implicated in collagenolysis. For example, MMP-1 residues 183–191, which are on the V-B loop between the fifth β-strand and the second α-helix in the CAT domain, as well as the active site cleft itself, have substantial roles in collagenolysis (6, 7). MMP-1 residue Gly-233 has been implicated as necessary for conformational flexibility of the active site (8). Within the MMP-1 linker domain, residues 262–276 were proposed to form a polyproline type II helix and interact with and destabilize the MMP cleavage site in collagen (9), whereas Gly-272 may allow bending of the linker domain to aid in interaction between the CAT and HPX domains (10).The HPX domain has a critical role in collagenolysis, as removal of the MMP-1, MMP-8, MMP-13, or MMP-14 (MT1-MMP) HPX domain results in a loss of collagenolytic activity (1116). However, no information has been obtained as to the identity of specific residues within the HPX domain that participate in collagenolysis. Secondary binding sites (exosites) may promote interaction of proteases with large, macromolecular substrates, such as collagen. The identification of exosites involved in collagenolysis may aid in the design of selective MMP inhibitors (1720). Ultimately, as exosites are identified, the manner in which the CAT, linker, and HPX domains work together to facilitate collagenolysis can be revealed.One approach for the rapid analysis of protein structure and identification of binding sites within proteins involves hydrogen/deuterium exchange (HDX) of protein backbone amide hydrogens with detection by mass spectrometry (MS) (2123). A protein or protein/ligand pair is incubated for defined intervals in a deuterated environment. After rapid quenching of the HDX reaction, the partially deuterated protein is digested, and the resulting peptide fragments are analyzed by LC-MS. The deuterium buildup curve measured for each fragment yields an average amide exchange rate that reflects the environment of the peptide in the intact protein. HDX MS has been used previously to monitor the interaction between doxycycline and MMP-7 (24). The interaction sites identified were consistent with other biophysical studies mapping doxycycline binding outside of the catalytic Zn2+ (24). This present study has utilized HDX MS with a triple helical peptide (THP) substrate to identify nonactive site MMP-1 regions involved in collagenolysis. Subsequently, site-specific mutagenesis of MMP-1 in combination with THP inhibitors and substrates was utilized to identify, for the first time, specific HPX domain residues that participate in collagenolysis and to provide insight as to how these residues function mechanistically.  相似文献   
87.

Background  

Homologous recombination mediated by the λ-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the λ-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these λ-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号