首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   43篇
  国内免费   3篇
  2021年   3篇
  2020年   3篇
  2017年   4篇
  2016年   7篇
  2015年   16篇
  2014年   15篇
  2013年   17篇
  2012年   20篇
  2011年   15篇
  2010年   21篇
  2009年   22篇
  2008年   22篇
  2007年   20篇
  2006年   13篇
  2005年   15篇
  2004年   13篇
  2003年   14篇
  2002年   12篇
  2001年   10篇
  2000年   8篇
  1999年   7篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   7篇
  1994年   2篇
  1993年   7篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   8篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1981年   3篇
  1980年   5篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
  1969年   4篇
  1966年   4篇
  1965年   2篇
  1964年   2篇
排序方式: 共有414条查询结果,搜索用时 78 毫秒
371.
The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance. Whether the abundance of a genus declined, increased, or was conserved, was independent of coral family. An analysis of fossil-reef communities in the Caribbean revealed changes in numerical dominance and relative abundances of coral genera, and demonstrated that neither dominance nor taxon was associated with persistence. As coral family was a poor predictor of performance on contemporary reefs, a trait-based, dynamic, multi-patch model was developed to explore the phenotypic basis of ecological performance in a warmer future. Sensitivity analyses revealed that upon exposure to thermal stress, thermal tolerance, growth rate, and longevity were the most important predictors of coral persistence. Together, our results underscore the high variation in the rates and direction of change in coral abundances on contemporary and fossil reefs. Given this variation, it remains possible that coral reefs will be populated by a subset of the present coral fauna in a future that is warmer than the recent past.  相似文献   
372.
Structural and gene expression changes in the microvasculature of the human choroid occur during normal aging and age-related macular degeneration (AMD). In this study, we sought to determine the impact of aging and AMD on expression of the endothelial cell glycoprotein CD34. Sections from 58 human donor eyes were categorized as either young (under age 40), age-matched controls (> age 60 without AMD), or AMD affected (>age 60 with early AMD, geographic atrophy, or choroidal neovascularization). Dual labeling of sections with Ulex europaeus agglutinin-I lectin (UEA-I) and CD34 antibodies was performed, and the percentage of capillaries labeled with UEA-I but negative for anti-CD34 was determined. In addition, published databases of mouse and human retinal pigment epithelium-choroid were evaluated and CD34 expression compared between young and old eyes. Immunohistochemical studies revealed that while CD34 and UEA-I were colocalized in young eyes, there was variable loss of CD34 immunoreactivity in older donor eyes. While differences between normal aging and AMD were not significant, the percentage of CD34 negative capillaries in old eyes, compared to young eyes, was highly significant (p = 3.8×10−6). Endothelial cells in neovascular membranes were invariably CD34 positive. Published databases show either a significant decrease in Cd34 (mouse) or a trend toward decreased CD34 (human) in aging. These findings suggest that UEA-I and endogenous alkaline phosphatase activity are more consistent markers of aging endothelial cells in the choroid, and suggest a possible mechanism for the increased inflammatory milieu in the aging choroid.  相似文献   
373.
Cellular FLIP (c-FLIP) is an enzymatically inactive paralogue of caspase-8 and as such can block death receptor-induced apoptosis. However, independent of death receptors, c-FLIP-Long (c-FLIPL) can heterodimerize with and activate caspase-8. This is critical for promoting the growth and survival of T lymphocytes as well as the regulation of the RIG-I helicase pathway for type I interferon production in response to viral infections. Truncated forms of FLIP also exist in mammalian cells (c-FLIPS) and certain viruses (v-FLIP), which lack the C-terminal domain that activates caspase-8. Thus, the ratio of c-FLIPL to these short forms of FLIP may greatly influence the outcome of an immune response. We examined this model in mice transgenically expressing c-FLIPS in T cells during infection with Coxsackievirus B3 (CVB3). In contrast to our earlier findings of reduced myocarditis and mortality with CVB3 infection of c-FLIPL-transgenic mice, c-FLIPS-transgenic mice were highly sensitive to CVB3 infection as manifested by increased cardiac virus titers, myocarditis score, and mortality compared to wild-type C57BL/6 mice. This observation was paralleled by a reduction in serum levels of IL-10 and IFN-α in CVB3-infected c-FLIPS mice. In vitro infection of c-FLIPS T cells with CVB3 confirmed these results. Furthermore, molecular studies revealed that following infection of cells with CVB3, c-FLIPL associates with mitochondrial antiviral signaling protein (MAVS), increases caspase-8 activity and type I IFN production, and reduces viral replication, whereas c-FLIPS promotes the opposite phenotype.  相似文献   
374.
375.
376.
1. Diel vertical migration (DVM) is a widespread phenomenon among marine and freshwater organisms and many studies with various taxa have sought to understand its adaptive significance. Among crustacean zooplankton and juveniles of some fish species DVM is accepted widely as an antipredator behaviour, but little is known about its adaptive value for relatively large-bodied, adult predatory fish such as sharks. Moreover, the majority of studies have focused on pelagic forms, which raises the question of whether DVM occurs in bottom-living predators. 2. To investigate DVM in benthic predatory fish in the marine environment and to determine why it might occur we tracked movements of adult male dogfish (Scyliorhinus canicula) by short- and long-term acoustic and archival telemetry. Movement studies were complemented with measurements of prey abundance and availability and thermal habitat within home ranges. A thermal choice experiment and energy budget modelling was used to investigate trade-offs between foraging and thermal habitat selection. 3. Male dogfish undertook normal DVM (nocturnal ascent) within relatively small home ranges (-100 x 100 m) comprising along-bottom movements up submarine slopes from deeper, colder waters occupied during the day into warmer, shallow prey-rich areas above the thermocline at night. Few daytime vertical movements occurred. Levels of activity were higher during the night above the thermocline compared to below it during the day indicating they foraged in warm water and rested in colder depths. 4. A thermal choice experiment using environmentally realistic temperatures supported the field observation that dogfish positively avoided warmer water even when it was associated with greater food availability. Males in laboratory aquaria moved into warm water from a cooler refuge only to obtain food, and after food consumption they preferred to rest and digest in cooler water. 5. Modelling of energy budgets under different realistic thermal-choice scenarios indicated dogfish adopting a 'hunt warm - rest cool' strategy could lower daily energy costs by just over 4%. Our results provide the first clear evidence that are consistent with the hypothesis that a benthic marine-fish predator utilizes DVM as an energy conservation strategy that increases bioenergetic efficiency.  相似文献   
377.
一种钒配合物LMC 抑制DNA 拓扑异构酶?的抗肿瘤作用   总被引:2,自引:1,他引:1       下载免费PDF全文
目的:探讨钒配合物LMc对拓扑异构酶Ⅰ、Ⅱ(Topo-Ⅰ、Topo-Ⅱ)的影响及其抗肿瘤活性。方法:采用DNA松弛实验观察LMC对Topo-Ⅰ、活性的影响并探讨其相关分子作用机制;采用MTT法、流式细胞术在细胞水平观察了IMC的抗肿瘤作用。结果:LMC可明显抑制Topo-Ⅰ活性,对Topo-Ⅱ无明显抑制作用,对多种肿瘤细胞株A549、Hela、BEL-7402具有明显抑制生长的作用,且可将细胞阻断在G2/M期,而对正常细胞株L-02生长无明显影响。结论:钒配合物LMC具有抑制Topo-Ⅰ活性而发挥抗肿瘤的作用。  相似文献   
378.
ABSTRACT. The Sirius Passet fauna from the Lower Cambrian of North Greenland yields a diverse suite of poorly sclerotized arthropods. A new nektaspid from the fauna described here differs from typical naraoiids in having six thoracic segments and in being isopygous. Soft parts are poorly known, but posterior limbs are preserved in some specimens. Although specimens are invariably highly flattened, details of the axial articulation suggest that the animal could enrol. The widths of the articulating half rings can be used to reconstruct both the degree of rotation at each articulation during enrolment and the height at which each point along the half ring is above the fulcrum, and this in turn may be used to make a full three-dimensional reconstruction of the exoskeleton. This method of retrodeformation is in principle applicable to the reconstruction of other taxa, especially trilobites, found in shales.  相似文献   
379.
380.
Why are arthropods segmented?   总被引:9,自引:0,他引:9  
SUMMARY Segmentation as an attribute of organisms is being increasingly discussed in the recent literature because (1) new phylogenies suggest that organisms classically considered to be segmented may lie in separate clades; (2) the molecular basis of segmental development has been much studied; (3) various theories of bilaterian origins place weight on segmentation as a primitive character; (4) there has been recent stress on the importance of modularity as an evolutionary topic. However, the definition and extent of segmentation are highly ambiguous and usually typological. Here, segmentation is regarded as an attribute of organs, not organisms. The evolution of just one system, the arthropod epidermis, is examined on the basis of the fossil record and the extant euarthropods, tardigrades, and onychophorans. It may be seen to have become segmented in a complex pathway that necessitated shifts in function, redundancy, and changes in associated organs. This complexity must inevitably reflect on, and to an extent have primacy over, the genetic basis for the changes involved. Evolutionary functional morphology has been relatively little considered in the context of the evolution of development, but may play an important role in defining the framework within which this evolution occurs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号