首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7838篇
  免费   538篇
  国内免费   3篇
  2023年   42篇
  2022年   43篇
  2021年   186篇
  2020年   111篇
  2019年   132篇
  2018年   175篇
  2017年   194篇
  2016年   275篇
  2015年   428篇
  2014年   446篇
  2013年   528篇
  2012年   641篇
  2011年   544篇
  2010年   360篇
  2009年   330篇
  2008年   409篇
  2007年   453篇
  2006年   398篇
  2005年   364篇
  2004年   348篇
  2003年   327篇
  2002年   304篇
  2001年   91篇
  2000年   56篇
  1999年   96篇
  1998年   88篇
  1997年   62篇
  1996年   54篇
  1995年   60篇
  1994年   59篇
  1993年   58篇
  1992年   49篇
  1991年   50篇
  1990年   57篇
  1989年   38篇
  1988年   40篇
  1987年   19篇
  1986年   37篇
  1985年   32篇
  1984年   30篇
  1983年   20篇
  1982年   29篇
  1981年   26篇
  1980年   15篇
  1979年   17篇
  1978年   15篇
  1976年   20篇
  1975年   13篇
  1974年   21篇
  1970年   16篇
排序方式: 共有8379条查询结果,搜索用时 468 毫秒
961.
The chromogranin A (CHGA)-derived peptide catestatin (CST: hCHGA(352-372)) is a noncompetitive catecholamine-release inhibitor that exerts vasodilator, antihypertensive, and cardiosuppressive actions. We have shown that CST directly influences the basal performance of the vertebrate heart where CST dose dependently induced a nitric oxide-cGMP-dependent cardiosuppression and counteracted the effects of adrenergic stimulation through a noncompetitive antagonism. Here, we sought to determine the specific intracardiac signaling activated by CST in the rat heart. Physiological analyses performed on isolated, Langendorff-perfused cardiac preparations revealed that CST-induced negative inotropism and lusitropism involve β(2)/β(3)-adrenergic receptors (β(2)/β(3)-AR), showing a higher affinity for β(2)-AR. Interaction with β(2)-AR activated phosphatidylinositol 3-kinase/endothelial nitric oxide synthase (eNOS), increased cGMP levels, and induced activation of phosphodiesterases type 2 (PDE2), which was found to be involved in the antiadrenergic action of CST as evidenced by the decreased cAMP levels. CST-dependent negative cardiomodulation was abolished by functional denudation of the endothelium with Triton. CST also increased the eNOS expression in cardiac tissue and human umbilical vein endothelial cells. cells, confirming the involvement of the vascular endothelium. In ventricular extracts, CST increased S-nitrosylation of both phospholamban and β-arrestin, suggesting an additional mechanism for intracellular calcium modulation and β-adrenergic responsiveness. We conclude that PDE2 and S-nitrosylation play crucial roles in the CST regulation of cardiac function. Our results are of importance in relation to the putative application of CST as a cardioprotective agent against stress, including excessive sympathochromaffin overactivation.  相似文献   
962.
963.
Glutamine (gln) is the most abundant free amino acid in the blood. It is involved in important metabolic and biochemical processes, like cell proliferation and oxidative stress. Previous studies have demonstrated that gln concentration in human plasma decreases in several conditions such as sepsis, ischemia-reperfusion, trauma, major surgery and burn. The aim of the present work was to compare the acute effects of different types of surgical interventions and of anesthetization on blood gln concentration. Plasma samples from 88 subjects (30 males and 58 females) were collected before and after major or minor surgery and the gln concentration was analyzed with high-performance liquid chromatography. The results showed that plasma gln concentration after surgery was lower than pre-surgery values and that in major surgery the decrease of gln was higher than in minor surgery. No significant effect was shown for sex or type of anesthesia. These results demonstrate the importance of a gln supplementation before a surgical intervention and show that the amount of gln supplementation should also be adjusted based on the type of surgery.  相似文献   
964.
Ceramide, a biologically active sphingolipid in cell death signaling, accumulates upon CD95L treatment, concomitantly to apoptosis induction in Jurkat leukemia T cells. Herein, we show that ceramide did not increase in caspase-8 and -10-doubly deficient Jurkat cells in response to CD95L, indicating that apical caspases are essential for CD95L-triggered ceramide formation. Jurkat cells are typically defined as type 2 cells, which require the activation of the mitochondrial pathway for efficient apoptosis induction in response to CD95L. Caspase-9-deficient Jurkat cells significantly resisted CD95L-induced apoptosis, despite ceramide accumulation. Knock-down of sphingomyelin synthase 1, which metabolizes ceramide to sphingomyelin, enhanced (i) CD95L-triggered ceramide production, (ii) cytochrome c release from the mitochondria and (iii) caspase-9 activation. Exogenous ceramide-induced caspase-3 activation and apoptosis were impaired in caspase-9-deficient Jurkat cells. Conversely, caspase-9 re-expression in caspase-9-deficient Jurkat cells restored caspase-3 activation and apoptosis upon exogenous ceramide treatment. Collectively, our data provide genetic evidence that CD95L-triggered endogenous ceramide increase in Jurkat leukemia T cells (i) is not a mere consequence of cell death and occurs mainly in a caspase-9-independent manner, (ii) is likely involved in the pro-apoptotic mitochondrial pathway leading to caspase-9 activation.  相似文献   
965.
We show via single-molecule mechanical unfolding experiments that the osmolyte glycerol stabilizes the native state of the human cardiac I27 titin module against unfolding without shifting its unfolding transition state on the mechanical reaction coordinate. Taken together with similar findings on the immunoglobulin-binding domain of streptococcal protein G (GB1), these experimental results suggest that osmolytes act on proteins through a common mechanism that does not entail a shift of their unfolding transition state. We investigate the above common mechanism via an Ising-like model for protein mechanical unfolding that adds worm-like-chain behavior to a recent generalization of the Wako-Saitô-Muñoz-Eaton model with support for group-transfer free energies. The thermodynamics of the model are exactly solvable, while protein kinetics under mechanical tension can be simulated via Monte Carlo algorithms. Notably, our force-clamp and velocity-clamp simulations exhibit no shift in the position of the unfolding transition state of GB1 and I27 under the effect of various osmolytes. The excellent agreement between experiment and simulation strongly suggests that osmolytes do not assume a structural role at the mechanical unfolding transition state of proteins, acting instead by adjusting the solvent quality for the protein chain analyte.  相似文献   
966.
Escherichia coli nitrate reductase A (NarGHI) is a membrane-bound enzyme that couples quinol oxidation at a periplasmically oriented Q-site (QD) to proton release into the periplasm during anaerobic respiration. To elucidate the molecular mechanism underlying such a coupling, endogenous menasemiquinone-8 intermediates stabilized at the QD site (MSQD) of NarGHI have been studied by high-resolution pulsed EPR methods in combination with 1H2O/2H2O exchange experiments. One of the two non-exchangeable proton hyperfine couplings resolved in hyperfine sublevel correlation (HYSCORE) spectra of the radical displays characteristics typical from quinone methyl protons. However, its unusually small isotropic value reflects a singularly low spin density on the quinone carbon α carrying the methyl group, which is ascribed to a strong asymmetry of the MSQD binding mode and consistent with single-sided hydrogen bonding to the quinone oxygen O1. Furthermore, a single exchangeable proton hyperfine coupling is resolved, both by comparing the HYSCORE spectra of the radical in 1H2O and 2H2O samples and by selective detection of the exchanged deuterons using Q-band 2H Mims electron nuclear double resonance (ENDOR) spectroscopy. Spectral analysis reveals its peculiar characteristics, i.e. a large anisotropic hyperfine coupling together with an almost zero isotropic contribution. It is assigned to a proton involved in a short ∼1.6 Å in-plane hydrogen bond between the quinone O1 oxygen and the Nδ of the His-66 residue, an axial ligand of the distal heme bD. Structural and mechanistic implications of these results for the electron-coupled proton translocation mechanism at the QD site are discussed, in light of the unusually high thermodynamic stability of MSQD.  相似文献   
967.
Obesity is associated with a significantly increased risk for cancer suggesting that adipose tissue dysfunctions might play a crucial role therein. Macrophages play important roles in adipose tissue as well as in cancers. Here, we studied whether human adipose tissue macrophages (ATM) modulate cancer cell function. Therefore, ATM were isolated and compared with monocyte-derived macrophages (MDM) from the same obese patients. ATM, but not MDM, were found to secrete factors inducing inflammation and lipid accumulation in human T47D and HT-29 cancer cells. Gene expression profile comparison of ATM and MDM revealed overexpression of functional clusters, such as cytokine-cytokine receptor interaction (especially CXC-chemokine) signaling as well as cancer-related pathways, in ATM. Comparison with gene expression profiles of human tumor-associated macrophages showed that ATM, but not MDM resemble tumor-associated macrophages. Indirect co-culture experiments demonstrated that factors secreted by preadipocytes, but not mature adipocytes, confer an ATM-like phenotype to MDM. Finally, the concentrations of ATM-secreted factors related to cancer are elevated in serum of obese subjects. In conclusion, ATM may thus modulate the cancer cell phenotype.  相似文献   
968.

Background

CpG island hypermethylation of gene promoters and regulatory regions is a well-known mechanism of epigenetic silencing of tumor suppressors and is directly linked to carcinogenesis. Wilm’s tumor gene (WT1) is a tumor suppressor protein involved in the regulation of human cell growth and differentiation and a modulator of oncogenic K Ras signaling in lung cancer. Changes in the pattern of methylation of the WT1 gene have not yet been studied in detail in human lung cancer. In this study we compared the methylation profile of WT1 gene in samples of neoplastic and non-neoplastic lung tissue taken from the same patients.

Methods

DNA was extracted from neoplastic and normal lung tissue obtained from 16 patients with non small cell lung cancer (NSCLC). The methylation status of 29 CpG islands in the 5′ region of WT1 was determined by pyrosequencing. Statistical analysis was carried out by T test and Mann Whitney test.

Results

The mean percentage of methylation, considering all CpG islands of WT1 in the neoplastic tissues of the 16 NSCLC patients, was 16.2 ± 3.4, whereas in the normal lung tissue from the same patients it was 5.6 ± 1.7 (p < 0.001). Adenocarcinomas presented higher methylation levels than squamous cell carcinomas (p < 0,001).

Conclusions

Methylation of WT1 gene is significantly increased in NSCLC. Both histotype and exposure to cigarette smoke heavily influence the pattern of CpG islands which undergo hypermethylation.  相似文献   
969.
970.
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A.?saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A.?saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50?°C, and at 60?°C it had a half-life of approximately 6?h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号