首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7876篇
  免费   541篇
  国内免费   3篇
  2023年   41篇
  2022年   42篇
  2021年   186篇
  2020年   112篇
  2019年   133篇
  2018年   181篇
  2017年   198篇
  2016年   276篇
  2015年   427篇
  2014年   445篇
  2013年   545篇
  2012年   644篇
  2011年   537篇
  2010年   362篇
  2009年   330篇
  2008年   412篇
  2007年   460篇
  2006年   398篇
  2005年   364篇
  2004年   349篇
  2003年   323篇
  2002年   311篇
  2001年   97篇
  2000年   59篇
  1999年   94篇
  1998年   85篇
  1997年   68篇
  1996年   54篇
  1995年   60篇
  1994年   54篇
  1993年   56篇
  1992年   49篇
  1991年   49篇
  1990年   56篇
  1989年   35篇
  1988年   36篇
  1987年   20篇
  1986年   30篇
  1985年   34篇
  1984年   33篇
  1983年   24篇
  1982年   29篇
  1981年   30篇
  1980年   17篇
  1979年   18篇
  1977年   12篇
  1976年   20篇
  1975年   13篇
  1974年   21篇
  1970年   17篇
排序方式: 共有8420条查询结果,搜索用时 31 毫秒
101.
Abstract A combined polymerase chain reaction and restriction endonuclease (RE) enzyme assay was developed to discriminate between Campylobacter coli and Campylobacter jejuni . Amplimers of the FlaA gene obtained by PCR were digested with Alu I and Hin fI to distinguish C. coli from C. jejuni . With Alu I digestion C. jejuni -specific bands were observed at 110, 140 and 160 bp and C. coli -specific bands at 293 and 147 bp. C. jejuni -specific bands of 349 and 109 bp were found by Hin fI digestion but Hin fI did not digest the Fla A amplimer of C. coli . This combined technique is fast and easy to perform, and distinguishes the two campylobacters unequivocally.  相似文献   
102.
The aim of our study was to determine whether a meal modifies the antisecretory response induced by PYY and the structural requirements to elicit antisecretory effects of analogue PYY(22–36) for potential antidiarrhea therapy. The variations in short-circuit current (Isc) due to the modification of ionic transport across the rat intestine were assessed in vitro, using Ussing chambers. In fasted rats, PYY induced a dose- and time-dependent reduction in Isc, with a sensitivity threshold at 5 × 10−11 M (ΔIsc −2 ± 0.5 μA/cm2). The reduction was maximal at 10−7 M (Isc −23 ± 2 μA/cm2), and the concentration producing half-maximal inhibition was 10−9 M. At 10−7 M, reduction of Isc by PYY reached 90% of response to 5 × 10−5 M bumetanide. The PYY effect was partly reversed by 10−5 M forskolin (Isc +13.43 ± 2.91 μA/h·cm2, p < 0.05) or 10−3 M dibutyryl adenosine 3′,5′ cyclic monophosphate (Isc +12 ± 1.69 μA/cm2, p < 0.05). Naloxone and tetrodotoxin did not alter the effect of PYY. In addition, PYY and its analogue P915 reduced net chloride ion secretion to 2.85 and 2.29 μEq/cm2 (p < 0.05), respectively. The antisecretory effect of PYY was accompanied by dose- and time-dependent desensitization when jejunum was prestimulated by a lower dose of peptide. The antisecretory potencies exhibited by PYY analogues required both a C-terminal fragment (22–36) and an aromatic amino acid residue (Trp or Phe) at position 27. At 10−7 M the biological activity of PYY was lower in fed than fasted rats (p < 0.001). Our results confirm the antisecretory effect of PYY, but show that the fed period is accompanied by desensitization, similar to the transient desensitization observed in the fasted period with cumulative doses. This suggests that PYY may act as a physiological mediator that reduces intestinal secretion.  相似文献   
103.
Abstract: The presence of receptors for the novel neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been recently demonstrated in the external granule cell layer of the cerebellum, a germinative matrix that generates the majority of cerebellar interneurons. In the present study, we have taken advantage of the possibility of obtaining a culture preparation that is greatly enriched in immature cerebellar granule cells to investigate the effect of PACAP on the adenylyl cyclase and phospholipase C transduction pathways. The two molecular forms of PACAP, i.e., 27-(PACAP27) and 38-(PACAP38) amino-acid forms of PACAP, induced a dose-dependent stimulation of cyclic AMP production in granule cells. The potencies of PACAP27 and PACAP38 were similar (ED50 = 0.12 ± 0.01 and 0.23 ± 0.07 n M , respectively), whereas vasoactive intestinal polypeptide (VIP) was ∼100 times less potent. PACAP27 and PACAP38 also induced a dose-dependent stimulation of polyphosphoinositide breakdown (ED50 = 19.1 ± 6.3 and 13.4 ± 6.0 n M , respectively), whereas VIP had no effect on polyphosphoinositide metabolism. The effect of PACAP38 on inositol phosphate formation was significantly reduced by U-73122 and by pertussis toxin, indicating that activation of PACAP receptors causes stimulation of a phospholipase C through a pertussis toxin-sensitive G protein. In contrast, forskolin and dibutyryl cyclic AMP did not affect PACAP-induced stimulation of inositol phosphates. Taken together, the present results demonstrate that PACAP stimulates independently the adenylyl cyclase and the phospholipase C transduction pathways in immature cerebellar granule cells. These data favor the concept that PACAP may play important roles in the control of proliferation and/or differentiation of cerebellar neuroblasts.  相似文献   
104.
Benthic algal mats and phytoplankton of Lake Gondwana (Northern Victoria Land, Antarctica) were investigated. Biomass, chlorophyll content and floristic analyses were carried out on algal mats. The mats are composed of two layers different in colour, floristic composition and chlorophyll content. The algal flora of the mats amount to 34 taxa (19 Cyanophyta, 7 Bacillariophyta, 8 Chlorophyta). The phytoplankton community is species-poor (only 5 taxa). Crytophyta account for about 98% of total algal density.  相似文献   
105.
The isolation of related genes with evolutionary conserved motifs by the application ofpolymerase chain reaction-based molecular biology techniques, or from database searchingstrategies, has facilitated the identification of new members of protein families. Many of theseprotein molecules will be involved in protein–protein interactions (e.g. growth factors,receptors, adhesion molecules), since such interactions are intrinsic to virtually every cellularprocess. However, the precise biological function and specific binding partners of these novelproteins are frequently unknown, hence they are known as orphan molecules.Complementary technologies are required for the identification of the specific ligands orreceptors for these and other orphan proteins (e.g., antibodies raised against crude biologicalextracts or whole cells). We describe herein several alternative strategies for the identification,purification and characterisation of orphan peptide and protein molecules, specifically thesynergistic use of micropreparative HPLC and biosensor techniques.  相似文献   
106.
We have constructed a comparative map in mouse of the critical region of human 22q11 deleted in DiGeorge (DGS) and Velocardiofacial (VCFS) syndromes. The map includes 11 genes potentially haploinsufficient in these deletion syndromes. We have localized all the conserved genes to mouse Chromosome (Chr) 16, bands B1-B3. The determination of gene order shows the presence of two regions (distal and proximal), containing two groups of conserved genes. The gene order in the two regions is not completely conserved; only in the proximal group is the gene order identical to human. In the distal group the gene order is inverted. These two regions are separated by a DNA segment containing at least one gene which, in the human DGS region, is the most proximal of the known deleted genes. In addition, the gene order within the distal group of genes is inverted relative to the human gene order. Furthermore, a clathrin heavy chain-like gene was not found in the mouse genome by DNA hybridization, indicating that there is an inconsistent level of gene conservation in the region. These and other independent data obtained in our laboratory clearly show a complex evolutionary history of the DGS-VCFS region. Our data provide a framework for the development of a mouse model for the 22q11 deletion with chromosome engineering technologies. Received: 8 July 1997 / Accepted 11 August 1997  相似文献   
107.
 A novel heptacoordinating ligand consisting of a thirteen-membered tetraazamacrocycle containing the pyridine ring and bearing three methylenephosphonate groups (PCTP-[13]) has been synthesized. Its Gd(III) complex displays a remarkably high longitudinal water proton relaxivity (7.7 mM–1 s–1 at 25  °C, 20 MHz and pH 7.5) which has been accounted for in terms of contributions arising from (1) one water molecule bound to the metal ion, (2) hydrogen-bonded water molecules in the second coordination sphere, or (3) water molecules diffusing near the paramagnetic chelate. Variable-temperature 17O-NMR transverse relaxation data indicate that the residence lifetime of the metal-bound water molecule is very short (8.0 ns at 25  °C) with respect to the Gd(III) complexes currently considered as contrast agents for magnetic resonance imaging. Furthermore, GdPCTP-[13] interacts with human serum albumin (HSA), likely through electrostatic forces. By comparing water proton relaxivity data for the GdPCTP-[13]-HSA adduct, measured as a function of temperature and magnetic field strength, with those for the analogous adduct with GdDOTP (a twelve-membered tetraaza macrocyclic tetramethylenephosphonate complex lacking a metal-bound water molecule), it has been possible to propose a general picture accounting for the main determinants of the relaxation enhancement observed when a paramagnetic Gd(III) complex is bound to HSA. Basically, the relaxation enhancement in these systems arises from (1) water molecules in the hydration shell of the macromolecule and protein exchangeable protons which lie close to the interaction site of the paramagnetic complex and (2) the metal bound water molecule(s). As far as the latter contribution is concerned, the interaction with the protein causes an elongation of the residence lifetime of the metal-bound water molecule, which limits, to some extent, the potential relaxivity enhancement expected upon the binding of the paramagnetic complex to HSA. Received: 27 January 1997 / Accepted: 12 May 1997  相似文献   
108.
The general amino acid permease, Gap1, of Saccharomyces cerevisiae is very active in cells grown on proline as the sole nitrogen source. Adding NH4+ to the medium triggers inactivation and degradation of the permease via a regulatory process involving Npi1p/Rsp5p, a ubiquitin–protein ligase. In this study, we describe several mutations affecting the C-terminal region of Gap1p that render the permease resistant to NH4+-induced inactivation. An in vivo isolated mutation ( gap1 pgr  ) causes a single Glu→Lys substitution in an amino acid context similar to the DXKSS sequence involved in ubiquitination and endocytosis of the yeast α-factor receptor, Ste2p. Another replacement, substitution of two alanines for a di-leucine motif, likewise protects the Gap1 permease against NH4+-induced inactivation. In mammalian cells, such a motif is involved in the internalization of several cell-surface proteins. These data provide the first indication that a di-leucine motif influences the function of a plasma membrane protein in yeast. Mutagenesis of a putative phosphorylation site upstream from the di-leucine motif altered neither the activity nor the regulation of the permease. In contrast, deletion of the last eleven amino acids of Gap1p, a region conserved in other amino acid permeases, conferred resistance to NH4+ inactivation. Although the C-terminal region of Gap1p plays an important role in nitrogen control of activity, it was not sufficient to confer this regulation to two NH4+-insensitive permeases, namely the arginine (Can1p) and uracil (Fur4p) permeases.  相似文献   
109.
We enzymatically deglycosylated pig lung angiotensin I-convertingenzyme (ACE) to study the involvement of its glycanic chainsin its physicochemical and catalytic properties. The effectsof endoglycosidases F2 and H, and of N-glycanase were assessedby ACE mobility in SDS-PAGE. N-Glycanase only was completelyeffective with or without previous denaturation, leading toa shift in ACE Mr from 172 to 135 kDa; endoglycosidase F2 producedthe same shift but only without previous denaturation. DeglycosylatedACE had the same kcat as native ACE for the substrate hippuryl-histidyl-leucine,and an identical Stokes radius as measured by size-exclusionhigh performance liquid chromatography. Neuraminidase had noeffect on ACE Stokes radius but slightly decreased its kcatwhich could be related to variations in ionization of the activesite. The isoelectric point of ACE, as, determined by isoelectricfocusing, increased from 4.5–4.8 to 5.0–5.3 aftereither endoglycosidase F2 or neuraminidase digestion, but stillwith microheterogeneities which thus did not seem to be relatedto ACE glycans. Deglycosylated ACE did not bind onto agaroselectinsin contrast to native ACE which bound strongly to concanavalinA showing interactions involving oligomannosidic or biantennaryand sialylated N-acetyl-lactosaminic isoglycans. Finally, tunicamycin,an inhibitor of N-glycosylation, did not modify ACE secretionby endothelial cells. Thus, ACE glycans have no drastic effectson structural and biological properties of the protein, butthey may have a functional role on intracellular targeting ofboth secreted and membrane-bound ACE isoforms, also for theprotection of the soluble plasma form against hepatic lectinsand the maintenance of its hydrosolubility. converting enzyme (peptidyldipeptidase EC.3.4.15.1) endothelium glycosidases lectins  相似文献   
110.
The cytosolic chaperonin containing TCP-1 (CCT) is known to keep fold cytoskeletal proteins and is involved in the proper organization of the cytoskeleton. These studies are based on the assumption that growth responses linked to structural rearrangement of the plant cytoskeleton include the action of CCT and the need for newly synthesized tubulin. The presence of the α- and ɛ- subunits of CCT was investigated in soluble fractions of protein extracts from maize mesocotyls and coleoptiles at distinct growth stages. The CCT-subunits, tubulins and actin decreased in the coleoptile in response to far-red light. In addition, independent from light treatment, the amount of CCTɛ abundance declined with age in coleoptiles and mesocotyls between 2 and 4.5 days after sowing. In contrast to CCTɛ, no significant light regulation of CCTα was found in the mesocotyl. In two day old, light-grown rapidly elongating coleoptiles part of the CCTα subunit and the bulk of actin and tubulin was found shifted into fractions of high molecular weight complexes when compared to slowly elongating, dark grown coleoptiles. In 4.5 day old, etiolated and elongating coleoptiles, part of both CCT-subunits and cytoskeleton proteins were found in fractions of high molecular weight. A complete disappearance of these polypeptides was observed in old far-red irradiated growth-arrested coleoptiles. CCTɛ was found to be co-localized to microtubular structures and to the nucleus. We conclude from our data that abundance of CCT-subunits in soluble extracts is dependent on age and light treatment, but independent from the growth stage of mesocotyl and coleoptile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号