首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   18篇
  国内免费   1篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   4篇
  2010年   9篇
  2009年   5篇
  2008年   3篇
  2007年   13篇
  2006年   8篇
  2005年   10篇
  2004年   3篇
  2003年   12篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   4篇
  1991年   3篇
  1989年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   6篇
  1980年   1篇
  1978年   3篇
  1977年   2篇
  1971年   1篇
排序方式: 共有158条查询结果,搜索用时 62 毫秒
71.
The vast majority of extant birds possess highly differentiated Z and W sex chromosomes. Nucleotide sequence data from gametologs (homologs on opposite sex chromosomes) suggest that this divergence occurred throughout early bird evolution via stepwise cessation of recombination between identical sex chromosomal regions. Here, we investigated avian sex chromosome differentiation from a novel perspective, using retroposon insertions and random insertions/deletions for the reconstruction of gametologous gene trees. Our data confirm that the CHD1Z/CHD1W genes differentiated in the ancestor of the neognaths, whereas the NIPBLZ/NIPBLW genes diverged in the neoavian ancestor and independently within Galloanserae. The divergence of the ATP5A1Z/ATP5A1W genes in galloanserans occurred independently in the chicken, the screamer, and the ancestor of duck-related birds. In Neoaves, this gene pair differentiated in each of the six sampled representatives, respectively. Additionally, three of our investigated loci can be utilized as universal, easy-to-use independent tools for molecular sexing of Neoaves or Neognathae.  相似文献   
72.
73.
74.
Structural relationship of human interferon alpha genes and pseudogenes   总被引:17,自引:0,他引:17  
We have isolated and characterized DNA segments containing IFN-alpha-related sequences from human lambda and cosmid clone banks. We describe six linkage groups comprising 18 distinct IFN-alpha-related loci, and report the nucleotide sequences of nine chromosomal IFN-alpha-genes with intact reading frames, as well as of five pseudogenes. Taking into account as yet unsequenced genes as well as clones described by others, there are now seven linkage groups and 23 loci, of which 15 correspond to potentially functional genes and six to non-functional genes; two loci remain unsequenced. Eighteen additional sequences are likely to be allelic to the above. The finding that at least two IFN-alpha genes appear to be natural hybrids of other IFN-alpha genes, and that two distinct IFN-alpha loci have completely identical coding sequences, although their flanking regions are different, is evidence for information exchange between the individual genes.  相似文献   
75.
76.
The intent of this review is to focus on recent advances in the understanding of the factors responsible for the progressive pathologic features of diabetic kidney disease, with special attention to various growth factors and cytokines that appear to be important in this process. In addition, emphasis is centered on relatively early stages of the disease, because animal models have been most helpful to date in understanding this stage of the disease process. Although tubulointerstitial changes are of critical importance in the progression of diabetic nephropathy, especially in the evolution to end-stage renal disease, there is a general consensus that glomerular pathology occurs first. Therefore, attention is limited to factors that may be important in the development of early diabetic glomerulopathy, including transforming growth factor-beta (TGF-β), insulin-like growth factor (IGF)-I, vascular endothelial growth factor (VEGF)-A, and connective tissue growth factor (CTGF).  相似文献   
77.

Background  

Aggressive behavior in animals is important for survival and reproduction. Identifying the underlying genes and environmental contexts that affect aggressive behavior is important for understanding the evolutionary forces that maintain variation for aggressive behavior in natural populations, and to develop therapeutic interventions to modulate extreme levels of aggressive behavior in humans. While the role of neurotransmitters and a few other molecules in mediating and modulating levels of aggression is well established, it is likely that many additional genetic pathways remain undiscovered. Drosophila melanogaster has recently been established as an excellent model organism for studying the genetic basis of aggressive behavior. Here, we present the results of a screen of 170 Drosophila P-element insertional mutations for quantitative differences in aggressive behavior from their co-isogenic control line.  相似文献   
78.
79.
Glucose transport is a highly regulated process and is dependent on a variety of signaling events. Glycogen synthase kinase-3 (GSK-3) has been implicated in various aspects of the regulation of glucose transport, but the mechanisms by which GSK-3 activity affects glucose uptake have not been well defined. We report that basal glycogen synthase kinase-3 (GSK-3) activity regulates glucose transport in several cell types. Chronic inhibition of basal GSK-3 activity (8-24 h) in several cell types, including vascular smooth muscle cells, resulted in an approximately twofold increase in glucose uptake due to a similar increase in protein expression of the facilitative glucose transporter 1 (GLUT1). Conversely, expression of a constitutively active form of GSK-3beta resulted in at least a twofold decrease in GLUT1 expression and glucose uptake. Since GSK-3 can inhibit mammalian target of rapamycin (mTOR) signaling via phosphorylation of the tuberous sclerosis complex subunit 2 (TSC2) tumor suppressor, we investigated whether chronic GSK-3 effects on glucose uptake and GLUT1 expression depended on TSC2 phosphorylation and TSC inhibition of mTOR. We found that absence of functional TSC2 resulted in a 1.5-to 3-fold increase in glucose uptake and GLUT1 expression in multiple cell types. These increases in glucose uptake and GLUT1 levels were prevented by inhibition of mTOR with rapamycin. GSK-3 inhibition had no effect on glucose uptake or GLUT1 expression in TSC2 mutant cells, indicating that GSK-3 effects on GLUT1 and glucose uptake were mediated by a TSC2/mTOR-dependent pathway. The effect of GSK-3 inhibition on GLUT1 expression and glucose uptake was restored in TSC2 mutant cells by transfection of a wild-type TSC2 vector, but not by a TSC2 construct with mutated GSK-3 phosphorylation sites. Thus, TSC2 and rapamycin-sensitive mTOR function downstream of GSK-3 to modulate effects of GSK-3 on glucose uptake and GLUT1 expression. GSK-3 therefore suppresses glucose uptake via TSC2 and mTOR and may serve to match energy substrate utilization to cellular growth.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号