首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   18篇
  国内免费   1篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   4篇
  2010年   9篇
  2009年   5篇
  2008年   3篇
  2007年   13篇
  2006年   8篇
  2005年   10篇
  2004年   3篇
  2003年   12篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   4篇
  1991年   3篇
  1989年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   6篇
  1980年   1篇
  1978年   3篇
  1977年   2篇
  1971年   1篇
排序方式: 共有158条查询结果,搜索用时 296 毫秒
61.
62.
In the tac promoter (deBoer, H. A., Comstock, L. J., and Vasser, M. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 21-25) the spacing between the -35 and -10 consensus sequences is 16 base pairs. Between these two regions we inserted 1 or 2 base pairs to increase the distance to 17 base pairs (trc promoter) or 18 base pairs (tic promoter). The activities of the three promoters were compared in vivo by fusion to the chloramphenicol acetyltransferase or to the Escherichia coli 4.5 S RNA gene. Both measurements gave consistent results. The trc and tic promoters are on average about 90% and 65% as active as the tac promoter, respectively.  相似文献   
63.
Secondary structure model for 23S ribosomal RNA.   总被引:31,自引:32,他引:31       下载免费PDF全文
A secondary structure model for 23S ribosomal RNA has been constructed on the basis of comparative sequence data, including the complete sequences from E. coli. Bacillus stearothermophilis, human and mouse mitochondria and several partial sequences. The model has been tested extensively with single strand-specific chemical and enzymatic probes. Long range base-paired interactions organize the molecule into six major structural domains containing over 100 individual helices in all. Regions containing the sites of interaction with several ribosomal proteins and 5S RNA have been located. Segments of the 23S RNA structure corresponding to eucaryotic 5.8S and 25 RNA have been identified, and base paired interactions in the model suggest how they are attached to 28S RNA. Functionally important regions, including possible sites of contact with 30S ribosomal subunits, the peptidyl transferase center and locations of intervening sequences in various organisms are discussed. Models for molecular 'switching' of RNA molecules based on coaxial stacking of helices are presented, including a scheme for tRNA-23S RNA interaction.  相似文献   
64.
65.
Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptor tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors.Proline-rich tyrosine kinase 2 (PYK2)2 and focal adhesion kinase (FAK) comprise the focal adhesion kinase subfamily of non-receptor tyrosine kinases. PYK2 and FAK are large multidomain proteins containing an N-terminal FERM domain, a central catalytic domain, and a C-terminal segment containing dual proline rich (PR) subdomains and a focal adhesion targeting (FAT) region (1, 2). While FAK is widely expressed, PYK2 expression is relatively restricted with highest levels in brain and the hematopoeitic system. Unlike FAK, optimal PYK2 activation is dependent on Ca2+ mobilization. PYK2 (-/-) animals have been described previously, and develop normally (3, 4). Characterization of the immune system of PYK2(-/-) animals revealed the absence of marginal zone B-cells along with abnormal T-cell independent type II responses (4), and altered macrophage morphology, migration and signaling in response to cell attachment or chemokine treatment (3). These studies strengthen the link between PYK2 and signaling through chemokine and integrin receptors. In addition, PYK2(-/-) mice were shown to have increased susceptibility to diet-induced obesity and diabetes (5).Recently, the characterization of PYK2(-/-) mice showed a high bone mass phenotype resulting from increased osteogenesis and osteoblast activity. Using PYK2(-/-) mouse bone marrow cultures and hMSCs expressing a PYK2 shRNA, elimination or reduction of PYK2 protein levels resulted in significantly enhanced osteogeogenesis. Importantly, the daily administration of a pyrimidine-based PYK2 inhibitor, PF-431396, increased bone formation, and protected against bone loss in ovariectomized rats (6). PYK2(-/-) mice showed mild osteopetrosis which was attributed to the impairment in osteoclast function (7). Therefore, the high bone mass phenotype may result from both enhanced osteoblast and impaired osteoclast elements.PYK2 is one member of a family of over 500 evolutionarily conserved enzymes with high amino acid and structural conservation within the catalytic ATP binding pocket. Classical kinase inhibitors bind to the ATP site and compete for substrate binding. Thus, while classical inhibitors based on ATP binding analogs have been readily identified, the inherent promiscuity of action for this class has presented significant challenges to drug design (8). With the exception of cancer therapeutics, where additional therapeutic benefits may be gained by the inhibition of multiple kinase targets (e.g. Sutent, Sorafenib), minimizing off-target activity is most often desired. Therefore, there is great interest in identifying unique allosteric regulatory domains for specific kinase targets. Despite intense effort, small molecule inhibitors exploiting extra-catalytic allosteric sites have been limited to a few examples including IKK (9) and MEK (10). Alternatively, bipartite inhibitors have been developed that stabilize an inactive conformation of the protein kinase, the prototypical example being BIRB796 binding to p38 and Gleevec binding to Abl. Such compounds make contact with both the conserved ATP site and less conserved regions of the activation loop, thus offering the potential for improved selectivity (11). The N terminus of the activation loop contains an invariant Asp-Phe-Gly (DFG) motif, and is an important determinant of enzyme activity. In the active or “DFG-in” conformation, these amino acids are involved in the coordination of ATP. Conversely, the “DFG-out” state does not bind ATP and the kinase is inactive. While a handful of kinases are known to adopt a DFG-out conformation (e.g. p38, Abl, etc), it remains to be determined how general this strategy might be in the design of selective kinase inhibitors.To help elucidate the molecular mechanism of PYK2 and its substrate specificity, we used biophysical methods and determined multiple x-ray structures of the PYK2 kinase domain. High-resolution structures of apo and ATPγS-bound forms were obtained as well as a complex with PF-431396, a “classical” kinase inhibitor. Empirical screening identified BIRB796 as a weak PYK2 kinase inhibitor. Surface plasmon resonance (SPR) and NMR studies indicated that PYK2 could adopt a “DFG-out” conformation. Despite the low affinity, a 1.75-Å co-crystal structure was obtained with BIRB796 revealing a novel binding mode. Our biophysical and structural results provide insight into the enzyme-substrate complex and allowed us to advance the rational design of a selective DFG-out inhibitor with improved PYK2 selectivity and potency. The compound, PF-4618433, showed robust osteogenic activity in hMSC cultures.  相似文献   
66.
The Australasian and South American marsupial mammals, such as kangaroos and opossums, are the closest living relatives to placental mammals, having shared a common ancestor around 130 million years ago. The evolutionary relationships among the seven marsupial orders have, however, so far eluded resolution. In particular, the relationships between the four Australasian and three South American marsupial orders have been intensively debated since the South American order Microbiotheria was taxonomically moved into the group Australidelphia. Australidelphia is significantly supported by both molecular and morphological data and comprises the four Australasian marsupial orders and the South American order Microbiotheria, indicating a complex, ancient, biogeographic history of marsupials. However, the exact phylogenetic position of Microbiotheria within Australidelphia has yet to be resolved using either sequence or morphological data analysis. Here, we provide evidence from newly established and virtually homoplasy-free retroposon insertion markers for the basal relationships among marsupial orders. Fifty-three phylogenetically informative markers were retrieved after in silico and experimental screening of ∼217,000 retroposon-containing loci from opossum and kangaroo. The four Australasian orders share a single origin with Microbiotheria as their closest sister group, supporting a clear divergence between South American and Australasian marsupials. In addition, the new data place the South American opossums (Didelphimorphia) as the first branch of the marsupial tree. The exhaustive computational and experimental evidence provides important insight into the evolution of retroposable elements in the marsupial genome. Placing the retroposon insertion pattern in a paleobiogeographic context indicates a single marsupial migration from South America to Australia. The now firmly established phylogeny can be used to determine the direction of genomic changes and morphological transitions within marsupials.  相似文献   
67.
The PYK2 tyrosine kinase is a negative regulator of bone formation, but aside from the requirement for PYK2 kinase activity there has been little progress toward understanding of the molecular mechanism involved in this function. To gain insight into the signaling pathways modulated by PYK2 we sought to identify PYK2 substrates. Challenges inherent to a quantitative phosphoproteomic analysis for non-receptor tyrosine kinases were overcome by employing an inducible PYK2 overexpression system in NIH3T3 cells in combination with a selective PYK2 inhibitor. The identification of a number of known PYK2 substrates and interacting partners validated the methodology. Results of the inducible cell system were extended to a cell model of osteogenesis, examining the effect of the PYK2 inhibitor on the phosphorylation state of targets identified in the phosphoproteomic study. Consistent with phosphoproteomic analysis, increased osteogenesis associated with a selective PYK2 inhibitor was accompanied by reduced phosphorylation of paxillin, Gab1 and p130Cas, along with reduction of phosphorylation levels of the Met activation loop. These results further confirmed the utility of the methodology and point to a previously unknown bi-directional activation pathway between PYK2 and Met.  相似文献   
68.
69.
70.

Introduction

The aim of this study was to determine the prevalence of gastrointestinal and behavioural symptoms occurring before (anticipatory/associative) and after methotrexate (MTX) administration, termed MTX intolerance, in rheumatoid (RA) and psoriatic arthritis (PsA).

Methods

Methotrexate Intolerance Severity Score (MISS), previously validated in juvenile idiopathic arthritis patients, was used to determine MTX intolerance prevalence in 291 RA/PsA patients. The MISS consisted of four domains: abdominal pain, nausea, vomiting and behavioural symptoms, occurring upon, prior to (anticipatory) and when thinking of MTX (associative). MTX intolerance was defined as ≥6 on the MISS with ≥1 point on anticipatory and/or associative and/or behavioural items.

Results

A total of 123 patients (42.3%) experienced at least one gastrointestinal adverse effect. The prevalence of MTX intolerance was 11%. MTX intolerance prevalence was higher in patients on parenteral (20.6%) than on oral MTX (6.2%) (p < 0.001).

Conclusion

Besides well-known gastrointestinal symptoms after MTX, RA and PsA patients experienced these symptoms also before MTX intake. RA and PsA patients on MTX should be closely monitored with the MISS for early detection of MTX intolerance, in order to intervene timely and avoid discontinuation of an effective treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号