首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   15篇
  国内免费   2篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   2篇
  2015年   8篇
  2014年   10篇
  2013年   18篇
  2012年   14篇
  2011年   12篇
  2010年   8篇
  2009年   5篇
  2008年   14篇
  2007年   8篇
  2006年   15篇
  2005年   3篇
  2004年   3篇
  2003年   6篇
  2002年   7篇
  2001年   11篇
  2000年   6篇
  1999年   7篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1983年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有205条查询结果,搜索用时 250 毫秒
21.
The heavy metals silver, gold, and mercury can strongly inhibit aquaporin-mediated water flow across plant cell membranes, but critical examinations of their side effects are rare. Here, the short-lived radiotracer (42)K is used to demonstrate that these metals, especially silver, profoundly change potassium homeostasis in roots of intact barley (Hordeum vulgare L.) plants, by altering unidirectional K(+) fluxes. Doses as low as 5 μM AgNO(3) rapidly reduced K(+) influx to 5% that of controls, and brought about pronounced and immediate increases in K(+) efflux, while higher doses of Au(3+) and Hg(2+) were required to produce similar responses. Reduced influx and enhanced efflux of K(+) resulted in a net loss of >40% of root tissue K(+) during a 15 min application of 500 μM AgNO(3), comprising the entire cytosolic potassium pool and about a third of the vacuolar pool. Silver also brought about major losses of UV-absorbing compounds, total electrolytes, and NH(4)(+). Co-application, with silver, of the channel blockers Cs(+), TEA(+), or Ca(2+), did not affect the enhanced efflux, ruling out the involvement of outwardly rectifying ion channels. Taken together with an examination of propidium iodide staining under confocal microscopy, the results indicate that silver ions affect K(+) homeostasis by directly inhibiting K(+) influx at lower concentrations, and indirectly inhibiting K(+) influx and enhancing K(+) efflux, via membrane destruction, at higher concentrations. Ni(2+), Cd(2+), and Pb(2+), three heavy metals not generally known to affect aquaporins, did not enhance K(+) efflux or cause propidium iodide incorporation. The study reveals strong and previously unknown effects of major aquaporin inhibitors and recommends caution in their application.  相似文献   
22.
Soil sodium, while toxic to most plants at high concentrations, can be beneficial at low concentrations, particularly when potassium is limiting. However, little is known about Na(+) uptake in this 'high-affinity' range. New information is provided here with an insight into the transport characteristics, mechanism, and ecological significance of this phenomenon. High-affinity Na(+) and K(+) fluxes were investigated using the short-lived radiotracers (24)Na and (42)K, under an extensive range of measuring conditions (variations in external sodium, and in nutritional and pharmacological agents). This work was supported by electrophysiological, compartmental, and growth analyses. Na(+) uptake was extremely sensitive to all treatments, displaying properties of high-affinity K(+) transporters, K(+) channels, animal Na(+) channels, and non-selective cation channels. K(+), NH(4)(+), and Ca(2+) suppressed Na(+) transport biphasically, yielding IC(50) values of 30, 10, and <5 μM, respectively. Reciprocal experiments showed that K(+) influx is neither inhibited nor stimulated by Na(+). Sodium efflux constituted 65% of influx, indicating a futile cycle. The thermodynamic feasibility of passive channel mediation is supported by compartmentation and electrophysiological data. Our study complements recent advances in the molecular biology of high-affinity Na(+) transport by uncovering new physiological foundations for this transport phenomenon, while questioning its ecological relevance.  相似文献   
23.
This study demonstrates the morphogenic potential of pulvinus, an important organ situated at the base of the petiole or rachis of leguminous plants. Plant regeneration via pulvinus-derived calli of Caesalpinia bonduc has been achieved. Organogenic calli have been derived from the explant 45 days after culture on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) alone or in combination with 6-benzylaminopurine (BA). Optimum callus induction (100%) occurred when the pulvini were cultured on MS medium fortified with 6 mg l−1 2,4-D and 1 mg l−1 BA. The highest shoot induction was obtained when the calli were transferred to MS medium supplemented with 5 mg l−1 BA and 1 mg l−1 indole-3-acetic acid (IAA). On this medium, 87% cultures responded with an average number of 4.2 shoots per culture. The maximum root induction from the regenerated shoots was observed on half strength MS medium containing 6 mg l−1 indole-3-butyric acid (IBA). Here 100% shoots rooted with a mean number of 6.3 roots per shoot. The regenerated plantlets were acclimatized and subsequently showed normal growth. This efficient protocol will be helpful for propagating elite clones on a mass scale and could be utilized for genetic transformation study.  相似文献   
24.

Background

Trypanosoma cruzi is the etiological agent of Chagas'' disease. Cysteine peptidases are relevant to several aspects of the T. cruzi life cycle and are implicated in parasite-mammalian host relationships. However, little is known about the factors that contribute to the parasite-insect host interaction.

Methodology/Principal Findings

Here, we have investigated whether cruzipain could be involved in the interaction of T. cruzi with the invertebrate host. We analyzed the effect of treatment of T. cruzi epimastigotes with anti-cruzipain antibodies or with a panel of cysteine peptidase inhibitors (cystatin, antipain, E-64, leupeptin, iodocetamide or CA-074-OMe) on parasite adhesion to Rhodnius prolixus posterior midgut ex vivo. All treatments, with the exception of CA074-OMe, significantly decreased parasite adhesion to R. prolixus midgut. Cystatin presented a dose-dependent reduction on the adhesion. Comparison of the adhesion rate among several T. cruzi isolates revealed that the G isolate, which naturally possesses low levels of active cruzipain, adhered to a lesser extent in comparison to Dm28c, Y and CL Brener isolates. Transgenic epimastigotes overexpressing an endogenous cruzipain inhibitor (pCHAG), chagasin, and that have reduced levels of active cruzipain adhered to the insect gut 73% less than the wild-type parasites. The adhesion of pCHAG parasites was partially restored by the addition of exogenous cruzipain. In vivo colonization experiments revealed low levels of pCHAG parasites in comparison to wild-type. Parasites isolated after passage in the insect presented a drastic enhancement in the expression of surface cruzipain.

Conclusions/Significance

These data highlight, for the first time, that cruzipain contributes to the interaction of T. cruzi with the insect host.  相似文献   
25.
Futile plasma membrane cycling of ammonium (NH4+) is characteristic of low-affinity NH4+ transport, and has been proposed to be a critical factor in NH4+ toxicity. Using unidirectional flux analysis with the positron-emitting tracer 13N in intact seedlings of barley (Hordeum vulgare L.), it is shown that rapid, futile NH4+ cycling is alleviated by elevated K+ supply, and that low-affinity NH4+ transport is mediated by a K+-sensitive component, and by a second component that is independent of K+. At low external [K+] (0.1 mM), NH4+ influx (at an external [NH4+] of 10 mM) of 92 micromol g(-1) h(-1) was observed, with an efflux:influx ratio of 0.75, indicative of rapid, futile NH4+ cycling. Elevating K+ supply into the low-affinity K+ transport range (1.5-40 mM) reduced both influx and efflux of NH4+ by as much as 75%, and substantially reduced the efflux:influx ratio. The reduction of NH4+ fluxes was achieved rapidly upon exposure to elevated K+, within 1 min for influx and within 5 min for efflux. The channel inhibitor La3+ decreased high-capacity NH4+ influx only at low K+ concentrations, suggesting that the K+-sensitive component of NH4+ influx may be mediated by non-selective cation channels. Using respiratory measurements and current models of ion flux energetics, the energy cost of concomitant NH4+ and K+ transport at the root plasma membrane, and its consequences for plant growth are discussed. The study presents the first demonstration of the parallel operation of K+-sensitive and -insensitive NH4+ flux mechanisms in plants.  相似文献   
26.
A comparative analysis of proteomic maps of long-term grown and fresh clinical Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes, respectively, was performed using two-dimensional gel electrophoresis and mass spectrometry. Of 29 protein spots differentially expressed between the isolates, 19 were over-expressed in the isolate exhibiting high virulence phenotype: proteins associated with cytoskeletal dynamics, such as coronin and several isoforms of actin, as well as proteins involved in signal transduction, protein turnover, proteolysis, and energetic and polyamine metabolisms were identified. Some malate dehydrogenase, fructose-1,6-bisphosphate aldolase and ornithine cyclodeamidase isoforms were exclusively expressed by the highly virulent isolate. During interaction assays with VEC, parasites exhibiting high virulence phenotype rapidly adhered and switched to amoeboid forms. In contrast, low adhesion and no morphological transformation were observed in parasites displaying low virulence phenotype. Our findings demonstrate that expression of specific proteins by high and low virulence parasites could be associated with the ability of each isolate to undergo morphological transformation and interact with host cells. Such data represent an important step towards understanding of the complex interaction network of proteins that participate in the mechanism of pathogenesis of this protozoan.  相似文献   
27.
Gap junction (GJ) channels couple adjacent cells, allowing transfer of second messengers, ions, and molecules up to 1 kDa. These channels are composed by a multigene family of integral membrane proteins called connexins (Cx). In the retina, besides being essential circuit element in the visual processing, GJ channels also play important roles during its development. Herein, we analyzed Cx43, Cx45, Cx50, and Cx56 expression during chick retinal histogenesis. Cx exhibited distinct expression profiles during retinal development, except for Cx56, whose expression was not detected. Cx43 immunolabeling was observed at early development, in the transition of ventricular zone and pigmented epithelium. Later, Cx43 was seen in the outer plexiform and ganglion cell layers, and afterwards also in the inner plexiform layer. We observed remarkable changes in the phosphorylation status of this protein, which indicated modifications in functional properties of this Cx during retinal histogenesis. By contrast, Cx45 showed stable gene expression levels throughout development and ubiquitous immunoreactivity in progenitor cells. From later embryonic development, Cx45 was mainly observed in the inner retina, and it was expressed by glial cells and neurons. In turn, Cx50 was virtually absent in the chick retina at initial embryonic phases. Combination of PCR, immunohistochemistry and Western blot indicated that this Cx was present in differentiated cells, arising in parallel with the formation of the visual circuitry. Characterization of Cx expression in the developing chick retina indicated particular roles for these proteins and revealed similarities and differences when compared to other species.  相似文献   
28.
29.
Neuronal migration is integral to the development of the cerebral cortex and higher brain function. Cortical neuron migration defects lead to mental disorders such as lissencephaly and epilepsy. Interaction of neurons with their extracellular environment regulates cortical neuron migration through cell surface receptors. However, it is unclear how the signals from extracellular matrix proteins are transduced intracellularly. We report here that mouse embryos lacking the Ras family guanine nucleotide exchange factor, C3G (Rapgef1, Grf2), exhibit a cortical neuron migration defect resulting in a failure to split the preplate into marginal zone and subplate and a failure to form a cortical plate. C3G-deficient cortical neurons fail to migrate. Instead, they arrest in a multipolar state and accumulate below the preplate. The basement membrane is disrupted and radial glial processes are disorganised and lack attachment in C3G-deficient brains. C3G is activated in response to reelin in cortical neurons, which, in turn, leads to activation of the small GTPase Rap1. In C3G-deficient cells, Rap1 GTP loading in response to reelin stimulation is reduced. In conclusion, the Ras family regulator C3G is essential for two aspects of cortex development, namely radial glial attachment and neuronal migration.  相似文献   
30.
Ratios of ammonium (NH4+) to nitrate (NO3) in soils are known to increase during forest succession. Using evidence from several previous studies, we hypothesize that a malfunction in NH4+ transport at the membrane level might limit the persistence of early successional tree species in later seral stages. In those studies, 13N radiotracing was used to determine unidirectional fluxes and pool sizes of NH4+ and NO3 in seedlings of the late-successional species white spruce ( Picea glauca ) and in the early successional species Douglas-fir ( Pseudotsuga menziesii var. glauca ) and trembling aspen ( Populus tremuloides ). At high external NH4+, the two early successional species accumulated excessive NH4+ in the root cytosol, and exhibited high-velocity, low-efficiency (15% to 22%), membrane fluxes of NH4+. In sharp contrast, white spruce had low cytosolic NH4+ accumulation, and lower-velocity but much higher-efficiency (65%), NH4+ fluxes. Because these divergent responses parallel known differences in tolerance and toxicity to NH4+ amongst these species, we propose that they constitute a significant driving force in forest succession, complementing the discrimination against NO3 documented in white spruce (Kronzucker et al. 1997).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号