首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23289篇
  免费   2199篇
  国内免费   7篇
  2021年   384篇
  2020年   218篇
  2019年   270篇
  2018年   385篇
  2017年   329篇
  2016年   509篇
  2015年   930篇
  2014年   1010篇
  2013年   1227篇
  2012年   1737篇
  2011年   1693篇
  2010年   1016篇
  2009年   1011篇
  2008年   1363篇
  2007年   1409篇
  2006年   1279篇
  2005年   1300篇
  2004年   1127篇
  2003年   1093篇
  2002年   1063篇
  2001年   365篇
  2000年   306篇
  1999年   313篇
  1998年   345篇
  1997年   213篇
  1996年   206篇
  1995年   192篇
  1994年   190篇
  1993年   162篇
  1992年   203篇
  1991年   196篇
  1990年   186篇
  1989年   207篇
  1988年   162篇
  1987年   162篇
  1986年   153篇
  1985年   168篇
  1984年   173篇
  1983年   135篇
  1982年   145篇
  1981年   155篇
  1980年   137篇
  1979年   127篇
  1978年   112篇
  1977年   104篇
  1976年   83篇
  1975年   77篇
  1974年   114篇
  1973年   93篇
  1972年   91篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
991.
Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3 enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels.  相似文献   
992.
An efficient Agrobacterium‐mediated site‐specific integration (SSI) technology using the flipase/flipase recognition target (FLP/FRT) system in elite maize inbred lines is described. The system allows precise integration of a single copy of a donor DNA flanked by heterologous FRT sites into a predefined recombinant target line (RTL) containing the corresponding heterologous FRT sites. A promoter‐trap system consisting of a pre‐integrated promoter followed by an FRT site enables efficient selection of events. The efficiency of this system is dependent on several factors including Agrobacterium tumefaciens strain, expression of morphogenic genes Babyboom (Bbm) and Wuschel2 (Wus2) and choice of heterologous FRT pairs. Of the Agrobacterium strains tested, strain AGL1 resulted in higher transformation frequency than strain LBA4404 THY‐ (0.27% vs. 0.05%; per cent of infected embryos producing events). The addition of morphogenic genes increased transformation frequency (2.65% in AGL1; 0.65% in LBA4404 THY‐). Following further optimization, including the choice of FRT pairs, a method was developed that achieved 19%–22.5% transformation frequency. Importantly, >50% of T0 transformants contain the desired full‐length site‐specific insertion. The frequencies reported here establish a new benchmark for generating targeted quality events compatible with commercial product development.  相似文献   
993.
Macroecology is a growing and important subdiscipline of ecology, but it is becoming increasingly diffuse, without an organizing principle that is widely agreed upon. I highlight two main current views of macroecology: as the study of large‐scale systems and as the study of emergent systems. I trace the history of both these views through the writings of the founders of macroecology. I also highlight the transmutation principle that identifies serious limitations to the study of large‐scale systems with reductionist approaches. And I suggest that much of the underlying goal of macroecology is the pursuit of general principles and the escape from contingency. I highlight that there are many intertwined aspects of macroecology, with a number of resulting implications. I propose that returning to a focus on studying assemblages of a large number of particles is a helpful view. I propose defining macroecology as “the study at the aggregate level of aggregate ecological entities made up of large numbers of particles for the purposes of pursuing generality”.  相似文献   
994.
995.
996.
Hypoxic preconditioning (HPC) may protect multiple organs from various injuries. We hypothesized that HPC would reduce lung injury in patients undergoing thoracoscopic lobectomy. In a prospective randomized controlled trial, 70 patients undergoing elective thoracoscopic lobectomy were randomly allocated to the HPC group or the control group. Three cycles of 5-min hypoxia and 3-min ventilation applied to the nondependent lung served as the HPC intervention. The primary outcome was the PaO2/FiO2 ratio. Secondary outcomes included postoperative pulmonary complications, pulmonary function, and duration of hospital stay. HPC significantly increased the PaO2/FiO2 ratio compared with the control at 30 min after one-lung ventilation and 7 days after operation. Compared with the control, it also significantly improved postoperative pulmonary function and markedly reduced the postoperative hospital stay duration. No significant differences between groups were observed in the incidence of pulmonary complications or overall postoperative morbidity. HPC improves postoperative oxygenation, enhances the recovery of pulmonary function, and reduces the duration of hospital stay in patients undergoing thoracoscopic lobectomy. This study was registered in the Chinese Clinical Trial Registry (ChiCTR-IPR-17011249) on April 27, 2017.  相似文献   
997.
Age‐related tendon degeneration (tendinosis) is characterized by a phenotypic change in which tenocytes display characteristics of fibrochondrocytes and mineralized fibrochondrocytes. As tendon degeneration has been noted in vivo in areas of decreased tendon vascularity, we hypothesized that hypoxia is responsible for the development of the tendinosis phenotype, and that these effects are more pronounced in aged tenocytes. Hypoxic (1% O2) culture of aged, tendinotic, and young human tenocytes resulted in a mineralized fibrochondrocyte phenotype in aged tenocytes, and a fibrochondrocyte phenotype in young and tendinotic tenocytes. Investigation of the molecular mechanism responsible for this phenotype change revealed that the fibrochondrocyte phenotype in aged tenocytes occurs with decreased Rac1 activity in response to hypoxia. In young hypoxic tenocytes, however, the fibrochondrocyte phenotype occurs with concomitant decreased Rac1 activity coupled with increased RhoA activity. Using pharmacologic and adenoviral manipulation, we confirmed that these hypoxic effects on the tenocyte phenotype are linked directly to the activity of RhoA/Rac1 GTPase in in vitro human cell culture and tendon explants. These results demonstrate that hypoxia drives tenocyte phenotypic changes, and provide a molecular insight into the development of human tendinosis that occurs with aging.  相似文献   
998.
Calorie restriction (CR), which lengthens lifespan in many species, is associated with moderate hyperadrenocorticism and attenuated inflammation. Given the anti‐inflammatory action of glucocorticoids, we tested the hypothesis that the hyperadrenocorticism of CR contributes to its attenuated inflammatory response. We used a corticotropin‐releasing‐hormone knockout (CRHKO) mouse, which is glucocorticoid insufficient. There were four controls groups: CRHKO mice and wild‐type (WT) littermates fed either ad libitum (AL) or CR (60% of AL food intake), and three experimental groups: (a) AL‐fed CRHKO mice given corticosterone (CORT) in their drinking water titrated to match the integrated 24‐hr plasma CORT levels of AL‐fed WT mice, (b) CR‐fed CRHKO mice given CORT to match the 24‐hr CORT levels of AL‐fed WT mice, and (c) CR‐fed CHRKO mice given CORT to match the 24‐hr CORT levels of CR‐fed WT mice. Inflammation was measured volumetrically as footpad edema induced by carrageenan injection. As previously observed, CR attenuated footpad edema in WT mice. This attenuation was significantly blocked in CORT‐deficient CR‐fed CRHKO mice. Replacement of CORT in CR‐fed CRHKO mice to the elevated levels observed in CR‐fed WT mice, but not to the levels observed in AL‐fed WT mice, restored the anti‐inflammatory effect of CR. These results indicate that the hyperadrenocorticism of CR contributes to the anti‐inflammatory action of CR, which may in turn contribute to its life‐extending actions.  相似文献   
999.
1000.
Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO2) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild‐type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high‐resolution electron backscatter diffraction and carbon isotope analyses (as δ13C). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate‐driven change to habitat acidification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号