首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   36篇
  2021年   3篇
  2018年   3篇
  2017年   5篇
  2015年   6篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   5篇
  2009年   9篇
  2008年   4篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   8篇
  2000年   6篇
  1999年   14篇
  1998年   10篇
  1997年   9篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   10篇
  1990年   10篇
  1989年   13篇
  1988年   6篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   6篇
  1978年   2篇
  1977年   10篇
  1976年   7篇
  1975年   4篇
  1974年   8篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1943年   1篇
排序方式: 共有265条查询结果,搜索用时 31 毫秒
51.
Two DNA sequences that appear to be homologous to large-subunit mitochondrial ribosomal RNA genes have been identified in the stone crabs Menippe mercenaria and M. adina. Amplification from whole genomic DNA by polymerase chain reaction (PCR) with oligonucleotide primers based on conserved portions of large-subunit mitochondrial rRNA genes consistently amplified two products of similar length (565 and 567 bp). These products differed at 3% of their nucleotide bases, and could be distinguished by a HindIII site. Only one of these sequences (designated the A sequence) was detected by PCR in purified mitochondrial DNA. The other (designated the B sequence) hybridized to total genomic DNA at a level consistent with a nuclear genome location. It is unlikely that the type B product would have been recognized as a nuclear copy by examination of its sequence alone. This is the first report of a mitochondrial gene sequence translocated into the nuclear genome of a crustacean.   相似文献   
52.
Net CO2 flux measurements conducted during the summer and winter of 1994–96 were scaled in space and time to provide estimates of net CO2 exchange during the 1995–96 (9 May 1995–8 May 1996) annual cycle for the Kuparuk River Basin, a 9200 km2 watershed located in NE Alaska. Net CO2 flux was measured using dynamic chambers and eddy covariance in moist‐acidic, nonacidic, wet‐sedge, and shrub tundra, which comprise 95% of the terrestrial landscape of the Kuparuk Basin. CO2 flux data were used as input to multivariate models that calculated instantaneous and daily rates of gross primary production (GPP) and whole‐ecosystem respiration (R) as a function of meteorology and ecosystem development. Net CO2 flux was scaled up to the Kuparuk Basin using a geographical information system (GIS) consisting of a vegetation map, digital terrain map, dynamic temperature and radiation fields, and the models of GPP and R. Basin‐wide estimates of net CO2 exchange for the summer growing season (9 May?5 September 1995) indicate that nonacidic tundra was a net sink of ?31.7 ± 21.3 GgC (1 Gg = 109 g), while shrub tundra lost 32.5 ± 6.3 GgC to the atmosphere (negative values denote net ecosystem CO2 uptake). Acidic and wet sedge tundra were in balance, and when integrated for the entire Kuparuk River Basin (including aquatic surfaces), whole basin summer net CO2 exchange was estimated to be in balance (?0.9 ± 50.3 GgC). Autumn to winter (6 September 1995–8 May 1996) estimates of net CO2 flux indicate that acidic, nonacidic, and shrub tundra landforms were all large sources of CO2 to the atmosphere (75.5 ± 8.3, 96.4 ± 11.4, and 43.3 ± 4.7 GgC for acidic, nonacidic, and shrub tundra, respectively). CO2 loss from wet sedge surfaces was not substantially different from zero, but the large losses from the other terrestrial landforms resulted in a whole basin net CO2 loss of 217.2 ± 24.1 GgC during the 1995–96 cold season. When integrated for the 1995–96 annual cycle, acidic (66.4 + 25.25 GgC), nonacidic (64.7 ± 29.2 GgC), and shrub tundra (75.8 ± 8.4 GgC) were substantial net sources of CO2 to the atmosphere, while wet sedge tundra was in balance (0.4 + 0.8 GgC). The Kuparuk River Basin as a whole was estimated to be a net CO2 source of 218.1 ± 60.6 GgC over the 1995–96 annual cycle. Compared to direct measurements of regional net CO2 flux obtained from aircraft‐based eddy covariance, the scaling procedure provided realistic estimates of CO2 exchange during the summer growing season. Although winter estimates could not be assessed directly using aircraft measurements of net CO2 exchange, the estimates reported here are comparable to measured values reported in the literature. Thus, we have high confidence in the summer estimates of net CO2 exchange and reasonable confidence in the winter net CO2 flux estimates for terrestrial landforms of the Kuparuk river basin. Although there is larger uncertainty in the aquatic estimates, the small surface area of aquatic surfaces in the Kuparuk river basin (≈ 5%) presumably reduces the potential for this uncertainty to result in large errors in basin‐wide CO2 flux estimates.  相似文献   
53.
54.
55.
Exposure of a thymic lymphocyte population (suspended in serum-free synthetic medium) to the phytomitogen concanavalin A (Con A) causes brief (within the first 8 to 12 minutes) rises in the cellular contents of cyclic AMP and cyclic GMP. However, the rise in the cyclic GMP level is calcium (extracellular)-dependent, but the cyclic AMP rise is not. These changes are followed during the next hour by the initiation of DNA synthesis by a large fraction of the lymphoblast subpopulation which, like the preceding cyclic GMP rise, is calcium-dependent. The stimulated lymphoblasts eventually progress into mitosis. Additional observations indicate that Con A operates by sensitizing lymphoblasts to calcium ions which, in turn, cause the initiation of DNA synthesis by a process mediated by cyclic GMP, but not cyclic AMP.  相似文献   
56.
Summary Proliferatively inactive BALB/c 3T3 mouse cells in dense cultures initiate a growth-division cycle upon exposure to fresh calf serum in a low-calcium (0.01 μM) medium. If these calcium-deprived cells are not supplied with calcium sometime during the first 10 hours after serum stimulation, they will rapidly return to a proliferatively inactive state without initiating DNA synthesis. The prereplicative development of such stimulated calcium-deprived cells appears to stop at an advanced stage, because addition of calcium as late as 10 hours after serum exposure rapidly initiates DNA synthesis, and enables the culture’s DNA-synthetic activity subsequently to reach its peak value at the same time as in control cultures. Issued as NRCC No. 14999. An erratum to this article is available at .  相似文献   
57.
58.
Sears BB  Boynton JE  Gillham NW 《Genetics》1980,96(1):95-114
In Chlamydomonas reinhardtii, gamete differentiation is induced by nitrogen deprivation. While cellular nitrogen content and amount of chloroplast DNA in cells of both mating types are reduced during gametogenesis, the spontaneous transmission of paternal (mt-) chloroplast alleles in crosses is specifically affected by the stringency of the nitrogen starvation regime used for pregrowth and gametogenesis of the mt- parent. In all cases, reciprocal crosses yielded biparental zygospores whose clones contain predominantly cells expressing only the chloroplast alleles from the maternal (mt+) parent. No differences attributable to strain divergence were seen in chloroplast gene inheritance pattern, DNA content, or the relative frequency of transmission of paternal chloroplast alleles to progeny of biparental zygospores.  相似文献   
59.
Lipid biosynthesis in relation to chloroplast development in barley   总被引:12,自引:0,他引:12  
During greening of detached leaves from dark-grown barley seedlings, the linolenic acid content of the lipids increases in the early stages of the formation of the chloroplast lamellar system. Primarily the fraction containing monogalactosyl diglyceride is enriched with linolenic acid. Incorporation of (14)C-labeled acetate into the leaf lipids of detached whole leaves is low, but increases 10- to 20-fold during greening. Increasing percentages of label appear in linolenic acid during the first 15 hr of greening, whereafter they remain constant. A constant, relatively high amount of acetate is incorporated into lipids when slices of leaves at various stages of greening are incubated by submersion in acetate solution, a treatment that blocks further chlorophyll synthesis during incubation. At the initial greening stages 75% of the label is channeled into steroids and other unsaponifiable lipids, but in advanced stages of chloroplast development 75% of the incorporated acetate is built into phospho-, sulfo- and galacto-lipids, and only 25% is channeled into unsaponifiable lipids. Experimental variation of the physiological conditions of the tissue during incubation resulted in differences in the amount of label found in the various phospho- and galacto-lipids. The amounts of labeling of the individual fatty acids in the lipid classes studied differ markedly and could be changed by varying the conditions of incubation. Labeling of linolenic acid was found to be highest in the monogalactosyl diglyceride fraction at all stages of greening.  相似文献   
60.
Summary We have developed an efficient procedure for the disruption of Chlamydomonas chloroplast genes. Wild-type C. reinhardtii cells were bombarded with microprojectiles coated with a mixture of two plasmids, one encoding selectable, antibiotic-resistance mutations in the 16S ribosomal RNA gene and the other containing either the atpB or rbcL photosynthetic gene inactivated by an insertion of 0.48 kb of yeast DNA in the coding sequence. Antibiotic-resistant transformants were selected under conditions permissive for growth of nonphotosynthetic mutants. Approximately half of these transformants were initially heteroplasmic for copies of the disrupted atpB or rbcL genes integrated into the recipient chloroplast genome but still retained photosynthetic competence. A small fraction of the transformants (1.1% for atpB; 4.3% for rbcL) were nonphotosynthetic and homoplasmic for the disrupted gene at the time they were isolated. Single cell cloning of the initially heteroplasmic transformants also yielded nonphotosynthetic segregants that were homoplasmic for the disrupted gene. Polypeptide products of the disrupted atpB and rbcL genes could not be detected using immunoblotting techniques. We believe that any nonessential Chlamydomonas chloroplast gene, such as those involved in photosynthesis, should be amenable to gene disruption by cotransformation. The method should prove useful for the introduction of site-specific mutations into chloroplast genes and flanking regulatory sequences with a view to elucidating their function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号