首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   36篇
  265篇
  2021年   3篇
  2018年   3篇
  2017年   5篇
  2015年   6篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   5篇
  2009年   9篇
  2008年   4篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   8篇
  2000年   6篇
  1999年   14篇
  1998年   10篇
  1997年   9篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   10篇
  1990年   10篇
  1989年   13篇
  1988年   6篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   6篇
  1978年   2篇
  1977年   10篇
  1976年   7篇
  1975年   4篇
  1974年   8篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1943年   1篇
排序方式: 共有265条查询结果,搜索用时 11 毫秒
21.
Microorganisms are famous for adapting quickly to new environments. However, most evidence for rapid microbial adaptation comes from laboratory experiments or domesticated environments, and it is unclear how rates of adaptation scale from human‐influenced environments to the great diversity of wild microorganisms. We examined potential monthly‐scale selective pressures in the model forest yeast Saccharomyces paradoxus. Contrary to expectations of seasonal adaptation, the S. paradoxus population was stable over four seasons in the face of abiotic and biotic environmental changes. While the S. paradoxus population was diverse, including 41 unique genotypes among 192 sampled isolates, there was no correlation between S. paradoxus genotypes and seasonal environments. Consistent with observations from other S. paradoxus populations, the forest population was highly clonal and inbred. This lack of recombination, paired with population stability, implies that selection is not acting on the forest S. paradoxus population on a seasonal timescale. Saccharomyces paradoxus may instead have evolved generalism or phenotypic plasticity with regard to seasonal environmental changes long ago. Similarly, while the forest population included diversity among phenotypes related to intraspecific interference competition, there was no evidence for active coevolution among these phenotypes. At least ten percent of the forest S. paradoxus individuals produced “killer toxins,” which kill sensitive Saccharomyces cells, but the presence of a toxin‐producing isolate did not predict resistance to the toxin among nearby isolates. How forest yeasts acclimate to changing environments remains an open question, and future studies should investigate the physiological responses that allow microbial cells to cope with environmental fluctuations in their native habitats.  相似文献   
22.
23.

Background  

Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years.  相似文献   
24.
25.
Poly(3-hydroxyalkanoates) (PHAs) are biodegradable thermoplastics which are accumulated by many bacterial species in the form of intracellular granules and which are thought to serve as reserves of carbon and energy. Pseudomonas putida accumulates a polyester, composed of medium-side-chain 3-hydroxyalkanoic acids, which has excellent film-forming properties. Industrial processing of PHA involves purification of the PHA granules from high-cell-density cultures. After the fermentation process, cells are lysed by homogenization and PHA granules are purified by chemical treatment and repeated washings to yield a PHA latex. Unfortunately, the liberation of chromosomal DNA during lysis causes a dramatic increase in viscosity, which is problematic in the subsequent purification steps. Reduction of the viscosity is generally achieved by the supplementation of commercially available nuclease preparations or by heat treatment; however, both procedures add substantial costs to the process. As a solution to this problem, a nuclease-encoding gene from Staphylococcus aureus was integrated into the genomes of several PHA producers. Staphylococcal nuclease is readily expressed in PHA-producing Pseudomonas strains and is directed to the periplasm, and occasionally to the culture medium, without affecting PHA production or strain stability. During downstream processing, the viscosity of the lysate from a nuclease-integrated Pseudomonas strain was reduced to a level similar to that observed for the wild-type strain after treatment with commercial nuclease. The nuclease gene was also functionally integrated into the chromosomes of other PHA producers, including Ralstonia eutropha.  相似文献   
26.
The platelet-derived growth factor (PDGF) mediates its cellular functions via activation of its receptor tyrosine kinase followed by the recruitment and activation of several signaling molecules. These signaling molecules then initiate specific signaling cascades, finally resulting in distinct physiological effects. To delineate the PDGF signaling pathway responsible for the disruption of gap junctional communication (GJC), wild-type PDGF receptor beta (PDGFRbeta) and a series of PDGFRbeta mutants were expressed in T51B rat liver epithelial cells. In cells expressing wild-type PDGFRbeta, PDGF induced disruption of GJC and phosphorylation of a gap junctional protein, connexin-43 (Cx43), which required activation of mitogen-activated protein kinase, although involvement of additional factors was also evident. In the F5 mutant lacking binding sites for phosphatidylinositol 3-kinase, GTPase-activating protein, SHP-2, and phospholipase Cgamma1 (PLCgamma1), PDGF induced mitogen-activated protein kinase, but failed to affect GJC or Cx43, indicating involvement of additional signals presumably initiated by one or more of the mutated binding sites. Examination of the single-site mutants revealed that PDGF effects were not mediated via a single signaling component. This was confirmed by the "add-back" mutants, which showed that restoration of either SHP-2 or PLCgamma1 binding was sufficient to propagate the GJC inhibitory actions of PDGF. Further analysis showed that activation of PLCgamma1 is involved in Cx43 phosphorylation, which surprisingly failed to correlate with GJC blockade. The results of our study demonstrate that PDGF-induced disruption of GJC can be mediated by multiple signaling pathways and requires participation of multiple components.  相似文献   
27.
A method is described for purification of P6, MRP8, and MRP14, three calcium-binding proteins assigned to the S100 protein family. The purification procedure included preparation of human granulocytes, ammonium sulfate precipitation, and anion-exchange chromatography and resulted in the copurification of P6, MRP8, and MRP14. Individual proteins were separated by either preparative isoelectric focusing or preparative SDS–PAGE. The procedure was carried out in the course of 4 days and yielded several milligrams of essentially pure P6, MRP8, and MRP14 in either native or denatured form.  相似文献   
28.
Bioinsecticides are important in the control of disease vectors, but data regarding their physiological effects on target insects are incomplete. This study describes morphological changes that occur in the midgut of third instar Aedes aegypti L. (Diptera: Culicidae) following treatment with a methanolic extract of Annona coriacea (Magnoliales: Annonaceae). Dissected midguts were subdivided into anterior and posterior regions and analyzed by light and scanning electron microscopy. Insects exposed to the extract displayed intense, destructive cytoplasmic vacuolization in columnar and regenerative midgut cells. The apical surfaces of columnar cells exhibited cytoplasmic protrusions oriented toward the lumen, suggesting that these cells could be involved in apocrine secretory processes and/or apoptosis. We report that A. coriacea extracts induced morphological alterations in the midgut of A. aegypti midgut larvae, supporting the use of plant extracts for control of the dengue vector.  相似文献   
29.

Background  

Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of heterochromatin structure in yeast and humans. However, this histone modification occurs predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not act by the recruitment model commonly proposed for histone modifications. To better understand the role of H3K79 methylation gene silencing, we investigated the silencing function of Dot1 by genetic suppressor and enhancer analysis and examined the relationship between Dot1 and other global euchromatic histone modifiers.  相似文献   
30.

Background

Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue.

Methods

Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue.

Results

Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen.

Conclusions

Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large discrepancies, future studies should seek to employ vessel-appropriate material models to simulate the response of diseased femoral tissue in order to obtain the most accurate numerical results.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号