首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   47篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   10篇
  2017年   7篇
  2016年   6篇
  2015年   14篇
  2014年   14篇
  2013年   14篇
  2012年   24篇
  2011年   28篇
  2010年   6篇
  2009年   8篇
  2008年   17篇
  2007年   11篇
  2006年   15篇
  2005年   17篇
  2004年   14篇
  2003年   14篇
  2002年   9篇
  2001年   15篇
  2000年   9篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有349条查询结果,搜索用时 31 毫秒
91.
Currently, it is accepted that brain injury promotes endogenous neurogenesis in mammals, primarily in the subventricular zone (SVZ), and newborn cells can migrate to the injured area. We examined the pattern of endogenous neurogenesis in adult rats after intracerebral hemorrhage (ICH) that was caused by intrastrial administration of collagenase type IV. Our results showed that ICH induced strong endogenous neurogenesis between 72 hours and 7 days after injury, but that the majority of newborn cells did not survive longer than 3 weeks due to apoptosis-mediated cell death. Furthermore, endogenous neurogenesis remained into a small extent at least 1 year after ICH. Because of the growing interest in new strategies for brain regeneration, these data suggest endogenous neurogenesis and inhibiting apoptosis of newborn neuroblasts as potential strategies to improve the consequences of hemorrhagic stroke in humans.  相似文献   
92.
In this study we report observations on the structural mechanisms of the cytopathic effect of Acanthamoeba castellanii trophozoites on cultured MDCK cell monolayers. Co-incubations were carried out for a maximum of 24h. The first evidence of damage to the cell monolayer was detected by measuring the transepithelial resistance of cell monolayers that interacted with the amoebae. At 6h, transepithelial resistance diminished to 51% and amoebae required 5-6h to produce evidence of structural injury at the light microscopy level. Following 12h of incubation, the cell monolayer was severely damaged. After making intimate contact with the surface of target cells, trophozoites detached cells from the substrate, lysed and by means of food-cups ingested the damaged cells. There was no morphological evidence of modifications in MDCK cell membranes, membrane fusion or junction formation between the amoeba and host plasma membrane. The lytic capacity of the amoebas appears to be the result of cytotoxic factors secreted by the amoebae since, when monolayers were incubated with conditioned medium, there was also a decrease in the transepithelial resistance. Besides, mechanical injury produced by the attachment and movement of the trophozoites may contribute to the disruption of the cell monolayer. As in other pathogenic amoebae, the cytopathic action of A. castellanii on the cell monolayers can subjectively be separated into four stages: adhesion, cytolysis, phagocytosis, and intracellular degradation.  相似文献   
93.
Parameters of visuospatial components of mental activity were studied in Mexican children aged 5–6 years with attention deficit disorder. The control group (norm) consisted of preschool children of the same age who attended municipal kindergartens. Neuropsychological methods specially developed and adapted for Mexican children were used. The results testified to prominent impairments of the parameters of spatial analysis and synthesis and of the formation level of object imagery, suggesting functional weakness of the posterior associative (TPO) cortical areas of both hemispheres. The results elucidate specific difficulties in cognitive activity and other impairments in children with attention deficit disorder.  相似文献   
94.
Although progesterone is the established maturation inducer in amphibians, Bufo arenarum oocytes obtained during the reproductive period (spring-summer) resume meiosis with no need of an exogenous hormonal stimulus if deprived of their enveloping follicle cells, a phenomenon called spontaneous maturation. In this species it is possible to obtain oocytes competent and incompetent to undergo spontaneous maturation according to the seasonal period in which animals are captured. Reinitiation of meiosis is regulated by maturation promoting factor (MPF), a complex of the cyclin-dependent kinase p34cdc2 and cyclin B. Although the function and molecule of MPF are common among species, the formation and activation mechanisms of MPF differ according to species. This study was undertaken to evaluate the presence of pre-MPF in Bufo arenarum oocytes incompetent to mature spontaneously and the effect of the injection of mature cytoplasm or germinal vesicle contents on the resumption of meiosis. The results of our treatment of Bufo arenarum immature oocytes incompetent to mature spontaneously with sodium metavanadate (NaVO3) and dexamethasone (DEX) indicates that these oocytes have a pre-MPF, which activates and induces germinal vesicle breakdown (GVBD) by dephosphorylation on Thr-14/Tyr-15 by cdc25 phosphatase and without cyclin B synthesis. The injection of cytoplasm containing active MPF is sufficient to activate an amplification loop that requires the activation of cdc25 and protein kinase C, the decrease in cAMP levels, and is independent of protein synthesis. However, the injection of germinal vesicle content also induces GVBD in the immature receptor oocyte, a process dependent on protein synthesis but not on cdc25 phosphatase or PKC activity.  相似文献   
95.
Swimming in ocean water, including ocean water at beaches not impacted by known point sources of pollution, is an increasing health concern. This study was an initial evaluation of the presence of indicator microbes and pathogens and the association among the indicator microbes, pathogens, and environmental conditions at a subtropical, recreational marine beach in south Florida impacted by non-point sources of pollution. Twelve water and eight sand samples were collected during four sampling events at high or low tide under elevated or reduced solar insolation conditions. The analyses performed included analyses of fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli, enterococci, and Clostridium perfringens), human-associated microbial source tracking (MST) markers (human polyomaviruses [HPyVs] and Enterococcus faecium esp gene), and pathogens (Vibrio vulnificus, Staphylococcus aureus, enterovirus, norovirus, hepatitis A virus, Cryptosporidium spp., and Giardia spp.). The enterococcus concentrations in water and sand determined by quantitative PCR were greater than the concentrations determined by membrane filtration measurement. The FIB concentrations in water were below the recreational water quality standards for three of the four sampling events, when pathogens and MST markers were also generally undetectable. The FIB levels exceeded regulatory guidelines during one event, and this was accompanied by detection of HPyVs and pathogens, including detection of the autochthonous bacterium V. vulnificus in sand and water, detection of the allochthonous protozoans Giardia spp. in water, and detection of Cryptosporidium spp. in sand samples. The elevated microbial levels were detected at high tide and under low-solar-insolation conditions. Additional sampling should be conducted to further explore the relationships between tidal and solar insolation conditions and between indicator microbes and pathogens in subtropical recreational marine waters impacted by non-point source pollution.Global estimates indicate that each year more than 120 million cases of gastrointestinal disease and 50 million cases of severe respiratory diseases are caused by swimming and bathing in wastewater-polluted coastal waters (42). Swimming-related illness is attributed predominantly to exposure to microbial pathogens, which enter the water through point sources, such as sewage outfalls. Water quality at beaches may also be impacted by non-point sources, such as storm water runoff, sand resuspension, animal fecal inputs, and human bather shedding (8, 12, 22, 47, 59).The concentration of indicator microorganisms in a body of recreational water is used to estimate the health risk to bathers. These microbes serve as surrogates for microbial pathogens. Studies show that the U.S. Environmental Protection Agency (EPA)-recommended indicator microbe for marine beaches, enterococci, shows a significant correlation with illness in marine beaches impacted by point source pollution (38, 54). However, a similar correlation has not been identified at beaches impacted by non-point source pollution or subtropical marine beaches (17, 29, 38, 54).The failure to consistently demonstrate an association between enterococci and illness at non-point source beaches calls into question the ability of indicator microbes to predict the presence of pathogens. Studies conducted on the west coast of the United States have shown that indicators are often not correlated with measured pathogens at non-point source beaches (31, 32, 33, 37). Additional studies conducted in a subtropical environment, such as that of South Florida, where this study was conducted, have repeatedly shown the limited accuracy of indicator microbe standards for determining the presence of pathogens (27, 35). This lack of correlation is understandable since an indicator microbe, such as enterococci, may come from relatively low-risk sources of fecal pollution and therefore may not be related to human or other high-risk sources of fecal pollution and pathogens (9). It has also been shown in both subtropical and temperate climates that indicator bacteria can multiply in the environment, resulting in a false impression of increased microbial pollution and pathogen presence (4, 7, 19, 24, 41, 45, 57, 58). Environmental factors, such as tide, rain, and solar insolation, can also have significant and varying effects on the levels of indicator and pathogenic microbes (21, 24, 33).The lack of correlation between pathogens and indicator microbes at non-point source beaches can result in two problematic scenarios. If indicator microbes are absent and pathogens are present (false-negative scenario), regulatory monitoring may fail to identify the potential adverse health effects on bathers due to the pathogens. This problem is likely to occur since indicator bacteria are less resistant to environmental stresses and disinfection at wastewater treatment plants than certain pathogens (6, 15). However, if indicator microbes are present and pathogens are absent (false-positive scenario), there can be unnecessary economic losses due to recreational beach advisories and/or closures. A 4-month closure of Huntington Beach in 1999 due to microbial standard violations resulted in the loss of millions of dollars in tourism income to the business community and almost 2 million dollars in beach closure investigation fees (55; for a review, see reference 27).Given these two possible scenarios, the relationship between indicator microbes and pathogens under different environmental conditions at non-point source beaches representing different geographic and climatic settings should be assessed further. Investigation of this relationship would require a large sample size in order to establish possible significant associations between the various factors and targets. The objective of this study was to conduct a preliminary evaluation of the presence of indicator microbes and pathogens and the possible association between indicator microbes, pathogen measurements, and environmental conditions at a subtropical recreational marine beach in South Florida. Because of cost limitations when multiple targets, including pathogens, are screened, this study was not intended to establish a conclusive relationship between the various factors and targets but was intended to provide insight into both the presence of organisms and possible associations which should be investigated further. Such information would be useful for understanding the potential health risks to bathers from non-point sources of microbes and would also contribute to determining the appropriateness of using indicator microbes to monitor the water quality at non-point source beaches. Although previous studies have assessed the presence of either viral, protozoan, or bacterial pathogens along with indicator microbes in point or non-point source recreational beach waters (27, 33, 37, 47), to our knowledge, this is the first study to assess the presence of all three classes of pathogens (viral, protozoan, and bacterial) as well as indicator microbes at a non-point source recreational beach. This study is also the first study to sample for all these microbes in both water and sand at a non-point source recreational beach. Through analysis of the various microbes under different targeted environmental conditions, this study also included a preliminary evaluation of the sources of microbial contaminants and pathogens and the effectiveness of various analytical methods for microbe detection. The latter part of the study included a comparison of three different methods for enterococcus enumeration, as well as an innovative method for simultaneously concentrating protozoans and viruses from water samples.  相似文献   
96.
Background aimsThe suppression of cell apoptosis using a biodegradable scaffold to replace the missing or altered extracellular matrix (ECM) could increase the survival of transplanted cells and thus increase the effectiveness of cell therapy.MethodsWe studied the best conditions for the proliferation and differentiation of human bone marrow stromal cells (hBMSC) when cultured on different biologic scaffolds derived from fibrin and blood plasma, and analyzed the best concentrations of fibrinogen, thrombin and calcium chloride for favoring cell survival. The induction of neural differentiation of hBMSC was done by adding to these scaffolds different growth factors, such as nerve growth factor (NGF), brain-derived-neurotrophic factor (BDNF) and retinoic acid (RA), at concentrations of 100 ng/mL (NGF and BDNF) and 1 μ/mL (RA), over 7 days.ResultsAlthough both types of scaffold allowed survival and neural differentiation of hBMSC, the results showed a clear superiority of platelet-rich plasma (PRP) scaffolds, mainly after BDNF administration, allowing most of the hBMSC to survive and differentiate into a neural phenotype.ConclusionsGiven that clinical trials for spinal cord injury using hBMSC are starting, these findings may have important clinical applications.  相似文献   
97.
Articular cartilage is optimised for bearing mechanical loads. Chondrocytes are the only cells present in mature cartilage and are responsible for the synthesis and integrity of the extracellular matrix. Appropriate joint loads stimulate chondrocytes to maintain healthy cartilage with a concrete protein composition according to loading demands. In contrast, inappropriate loads alter the composition of cartilage, leading to osteoarthritis (OA). Matrix metalloproteinases (MMPs) are involved in degradation of cartilage matrix components and have been implicated in OA, but their role in loading response is unclear. With this study, we aimed to elucidate the role of MMP-1 and MMP-3 in cartilage composition in response to mechanical load and to analyse the differences in aggrecan and type II collagen content in articular cartilage from maximum- and minimum-weight-bearing regions of human healthy and OA hips. In parallel, we analyse the apoptosis of chondrocytes in maximal and minimal load areas. Because human femoral heads are subjected to different loads at defined sites, both areas were obtained from the same hip and subsequently evaluated for differences in aggrecan, type II collagen, MMP-1, and MMP-3 content (enzyme-linked immunosorbent assay) and gene expression (real-time polymerase chain reaction) and for chondrocyte apoptosis (flow cytometry, bcl-2 Western blot, and mitochondrial membrane potential analysis). The results showed that the load reduced the MMP-1 and MMP-3 synthesis (p < 0.05) in healthy but not in OA cartilage. No significant differences between pressure areas were found for aggrecan and type II collagen gene expression levels. However, a trend toward significance, in the aggrecan/collagen II ratio, was found for healthy hips (p = 0.057) upon comparison of pressure areas (loaded areas > non-loaded areas). Moreover, compared with normal cartilage, OA cartilage showed a 10- to 20-fold lower ratio of aggrecan to type II collagen, suggesting that the balance between the major structural proteins is crucial to the integrity and function of the tissue. Alternatively, no differences in apoptosis levels between loading areas were found – evidence that mechanical load regulates cartilage matrix composition but does not affect chondrocyte viability. The results suggest that MMPs play a key role in regulating the balance of structural proteins of the articular cartilage matrix according to local mechanical demands.  相似文献   
98.
Malnutrition, which is widespread in developing countries, may be particularly devastating during childhood, when tissue development is occurring and nutrient requirements are great. Since protein-energy malnutrition potentially involves many cellular alterations, we have evaluated gene expression changes in lymphocytes from malnourished children using differential hybridization cloning. A cDNA library was generated from well-nourished children and differential screenings were performed with cDNAs obtained from well-nourished and malnourished children who presented with bacterial gastrointestinal infections. Differential expression was detected for genes involved in cell development and differentiation, and for genes involved in lymphocyte and mitochondrial functions. The genes detected in the present study suggest mechanisms for the changes in cell growth and immune function that are associated with protein-energy malnutrition. Two down-regulated genes in malnourished children may represent mechanisms of protection against immunosuppression. This finding clearly merits further investigation.  相似文献   
99.
Bacteriophages are an invaluable source of novel genetic diversity. Sequencing of phage genomes can reveal new proteins with potential uses as biotechnological and medical tools, and help unravel the diversity of biological mechanisms employed by phages to take over the host during viral infection. Aiming to expand the available collection of phage genomes, we have isolated, sequenced, and assembled the genome sequences of four phages that infect the clinical pathogen Klebsiella pneumoniae: vB_KpnP_FBKp16, vB_KpnP_FBKp27, vB_KpnM_FBKp34, and Jumbo phage vB_KpnM_FBKp24. The four phages show very low (0–13%) identity to genomic phage sequences deposited in the GenBank database. Three of the four phages encode tRNAs and have a GC content very dissimilar to that of the host. Importantly, the genome sequences of the phages reveal potentially novel DNA packaging mechanisms as well as distinct clades of tubulin spindle and nucleus shell proteins that some phages use to compartmentalize viral replication. Overall, this study contributes to uncovering previously unknown virus diversity, and provides novel candidates for phage therapy applications against antibiotic-resistant K. pneumoniae infections.  相似文献   
100.
The digestive vacuole plasmepsins PfPM1, PfPM2, PfPM4, and PfHAP (a histoaspartic proteinase) are 4 aspartic proteinases among 10 encoded in the Plasmodium falciparum malarial genome. These have been hypothesized to initiate and contribute significantly to hemoglobin degradation, a catabolic function essential to the survival of this intraerythrocytic parasite. Because of their perceived significance, these plasmepsins have been proposed as potential targets for antimalarial drug development. To test their essentiality, knockout constructs were prepared for each corresponding gene such that homologous recombination would result in two partial, nonfunctional gene copies. Disruption of each gene was achieved, as confirmed by PCR, Southern, and Northern blot analyses. Western and two-dimensional gel analyses revealed the absence of mature or even truncated plasmepsins corresponding to the disrupted gene. Reduced growth rates were observed with PfPM1 and PfPM4 knockouts, indicating that although these plasmepsins are not essential, they are important for parasite development. Abnormal mitochondrial morphology also appeared to accompany loss of PfPM2, and an abundant accumulation of electron-dense vesicles in the digestive vacuole was observed upon disruption of PfPM4; however, those phenotypes only manifested in about a third of the disrupted cells. The ability to compensate for loss of individual plasmepsin function may be explained by close similarity in the structure and active site of these four vacuolar enzymes. Our data imply that drug discovery efforts focused on vacuolar plasmepsins must incorporate measures to develop compounds that can inhibit two or more of this enzyme family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号