首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27445篇
  免费   15602篇
  国内免费   4篇
  2024年   2篇
  2023年   16篇
  2022年   95篇
  2021年   441篇
  2020年   2212篇
  2019年   3736篇
  2018年   3848篇
  2017年   4132篇
  2016年   4138篇
  2015年   4112篇
  2014年   3750篇
  2013年   4182篇
  2012年   1913篇
  2011年   1644篇
  2010年   3117篇
  2009年   1857篇
  2008年   802篇
  2007年   385篇
  2006年   362篇
  2005年   409篇
  2004年   378篇
  2003年   361篇
  2002年   333篇
  2001年   278篇
  2000年   208篇
  1999年   165篇
  1998年   26篇
  1997年   14篇
  1996年   12篇
  1995年   21篇
  1994年   18篇
  1993年   10篇
  1992年   12篇
  1991年   14篇
  1990年   9篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1982年   2篇
  1980年   2篇
  1973年   3篇
  1972年   3篇
  1970年   2篇
  1956年   1篇
  1889年   1篇
  1882年   1篇
  1881年   1篇
  1873年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Xylanases are capable of decomposing xylans, the major components in plant cell wall, and releasing the constituent sugars for further applications. Because xylanase is widely used in various manufacturing processes, high specific activity, and thermostability are desirable. Here, the wild‐type and mutant (E146A and E251A) catalytic domain of xylanase from Thermoanaerobacterium saccharolyticum JW/SL‐YS485 (TsXylA) were expressed in Escherichia coli and purified subsequently. The recombinant protein showed optimal temperature and pH of 75°C and 6.5, respectively, and it remained fully active even after heat treatment at 75°C for 1 h. Furthermore, the crystal structures of apo‐form wild‐type TsXylA and the xylobiose‐, xylotriose‐, and xylotetraose‐bound E146A and E251A mutants were solved by X‐ray diffraction to high resolution (1.32–1.66 Å). The protein forms a classic (β/α)8 folding of typical GH10 xylanases. The ligands in substrate‐binding groove as well as the interactions between sugars and active‐site residues were clearly elucidated by analyzing the complex structures. According to the structural analyses, TsXylA utilizes a double displacement catalytic machinery to carry out the enzymatic reactions. In conclusion, TsXylA is effective under industrially favored conditions, and our findings provide fundamental knowledge which may contribute to further enhancement of the enzyme performance through molecular engineering. Proteins 2013; 81:1256–1265. © 2013 Wiley Periodicals, Inc.  相似文献   
962.
Information from 15 satellite‐tracked Antillean manatees (Trichechus manatus manatus) was analyzed in order to assess individual movements, home ranges, and high‐use areas for conservation decisions. Manatees were captured in Chetumal Bay, Mexico, and tagged with Argos‐monitored satellite transmitters. Location of the manatees and physical characteristics were assessed to describe habitat properties. Most manatees traveled to freshwater sources. The Maximum Area Size (MAS) for each manatee was determined using the observation‐area method. Additional kernel densities of 95% home range and 50% Center of Activity (COA) were also calculated, with manatees having 1–3 COAs. Manatees exhibited two different movement patterns: remaining in Chetumal Bay, and long‐distance (up to 240 km in 89 d). The residence time in Chetumal Bay was higher for females (89.6% of time) than for males (72.0%), but the daily travel rate (0.4–0.5 km/d) was similar for both sexes. Most of the COAs fell within Natural Protected Areas (NPA). However, manatees also travel for long distances into unprotected areas, where they face uncontrolled boat traffic, fishing activities, and habitat loss. Conservation of movement corridors may promote long‐distance movements and facilitate genetic exchange.  相似文献   
963.
964.
Human cytosolic aspartyl‐tRNA synthetase (DRS) catalyzes the attachment of the amino acid aspartic acid to its cognate tRNA and it is a component of the multi‐tRNA synthetase complex (MSC) which has been known to be involved in unexpected signaling pathways. Here, we report the crystal structure of DRS at a resolution of 2.25 Å. DRS is a homodimer with a dimer interface of 3750.5 Å2 which comprises 16.6% of the monomeric surface area. Our structure reveals the C‐terminal end of the N‐helix which is considered as a unique addition in DRS, and its conformation further supports the switching model of the N‐helix for the transfer of tRNAAsp to elongation factor 1α. From our analyses of the crystal structure and post‐translational modification of DRS, we suggest that the phosphorylation of Ser146 provokes the separation of DRS from the MSC and provides the binding site for an interaction partner with unforeseen functions.Proteins 2013; 81:1840–1846. © 2013 Wiley Periodicals, Inc.  相似文献   
965.
Evolutionary patterns of Clavatoraceae during the Malm and the Lower Cretaceous can be understood by considering how palaeoecological constraints of these charophytes were affected by palaeoenvironmental change. Speciation of Clavatoraceae reached maxima in the Tithonian and especially in the Lower Barremian, coinciding with an important areal extension and environmental diversification of freshwater swamps. Extinction reached a peak in the Upper Barremian, coinciding with the marine flooding of freshwater environments in Mesogea, and continued through the Aptian and Albian due to substitution of carbonatic freshwater swamps by terrigenous deltaic environments and probably by development of highly competitive aquatic flora of angiosperms. Anagenetic change within species attained maxima during the Berriasian and Lower Barremian, when freshwater environments became extensively developed. Absence of change (stasis) was marked during the Valanginian and Hauterivian, in a geological context of environmental stability and areal reduction of the freshwater environments.  相似文献   
966.
Twelve groups of fossils, including graptolites, brachiopods, nautiloids, trilobites, corals, crinoids, bryozoans, conodonts, ostracods, gastropods, chitinozoans, and acritarchs expired in different but substantial magnitude and global extent during the late Caradoc to latest Ashgill. It indicates a multiple‐episodic mass extinction containing the possible Prologue (late Caradoc), Climax episode (Rawtheyan) and Epilogue (late Hirnantian). The main causes of this mass extinction are recognized as a global sea‐level lowering in the climax and remarkable rapid rise at the final, and global cooling. The Chinese data, especially from the South China Paleoplate, are evaluated first. They are significant for explaining this global bioevent.  相似文献   
967.
Graptolites nearly became extinct in the latest Wenlock in all preserved stratigraphic sequences of this age. Graptolite mortalities occurred along the western coast of Laurentia and at sites that surrounded the Proto‐Tethys. Graptolite mass mortalities took place among deep‐water, open ocean dwelling organisms. After the mass mortalities, only the Pristiograptus dubius group and retiolids surface or near‐surface dwellers, survived. For a period of time, little speciation or diversification occurred. The base of the Ludlow is marked by diversification, with appearances of S. colonus, M. nilssoni and other groups which occur in near surface waters. None of the extensive plate movements postulated for the Silurian readily explain the mass extinctions that occurred. During the Silurian, global temperatures were warmer than present and atmospheric oxygen concentrations were lower, creating extensive oceanic anoxia. Below the oxygenated surface layers of the ocean, was an anoxic, non‐sulfidic zone (i.e. nitrate‐reducing) above a sulfidic zone. Graptolites lived over a range of depth from the oxygenated zone to either near or in the nitrate‐reducing zones. As the oxygen concentration declined through the Silurian, the depth of the oxic zone would have become shoaler with expanding anoxia. Late Wenlock graptolites that were unable to migrate to shallower depths, living in borderline oxygen conditions, could have been killed, resulting in the mortalities of the late Wenlock. Only those graptolites that were surface dwellers survived, adapted and reradiated.  相似文献   
968.
A missense mutation I148M in PNPLA3 (patatin‐like phospholipase domain‐containing 3 protein) is significantly correlated with nonalcoholic fatty liver disease (NAFLD). To glean insights into mutation's effect on enzymatic activity, we performed molecular dynamics simulation and flexible docking studies. Our data show that the size of the substrate‐access entry site is significantly reduced in mutants, which limits the access of palmitic acid to the catalytic dyad. Besides, the binding free energy calculations suggest low affinity for substrate to mutant enzyme. The substrate‐bound system simulations reveal that the spatial arrangement of palmitic acid is distinct in wild‐type from that in mutant. The substrate recognition specificity is lost due to the loop where the I148M mutation was located. Our results provide strong evidence for the mechanism by which I148M affects the enzyme activity and suggest that mediating the dynamics may offer a potential avenue for NAFLD. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
969.
Phosphoserine phosphatase (PSP) catalyzes the final and irreversible step of L‐serine synthesis by hydrolyzing phosphoserine to produce L ‐serine and inorganic phosphate. Developing a therapeutic drug that interferes with serine production is of great interest to regulate the pathogenicity of some bacteria and control D ‐serine levels in neurological diseases. We determined the crystal structure of PSP from the hyperthermophilic archaeon Thermococcus onnurineus at 1.8 Å resolution, revealing an NDSB ligand bound to a novel site that is located in a fissure between the catalytic domain and the CAP module. The structure shows a half‐open conformation of the CAP 1 module with a unique protruding loop of residues 150–155 that possesses a helical conformation in other structures of homologous PSPs. Activity assays indicate that the enzyme exhibits marginal PSP activity at low temperature but a sharp increase in the kcat/KM value, approximately 22 fold, when the temperature is increased. Structural and biochemical analyses suggest that the protruding loop in the active site might be an essential component for the regulation of the activity of PSP from hyperthermophilic T. onnurineus. Identification of this novel binding site distantly located from the catalytic site may be exploited for the development of effective therapeutic allosteric inhibitors against PSP activity. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
970.
Because of having many low molecular mass substrates, CYP2E1 is of particular interests to the pharmaceutical industry. Many evidences showed that this enzyme can adopt multiple substrates to significantly reduce the oxidation rate of the substrates. The detailed mechanism for this observation is still unclear. In the current study, we employed GPU‐accelerated molecular dynamics simulations to study the multiple‐binding mode of human CYP2E1, with an aim of offering a mechanistic explanation for the unexplained multiple‐substrate binding. Our results showed that Thr303 and Phe478 were key factors for the substrate recognition and multiple‐substrate binding. The former can form a significant hydrogen bond to recognize and position the substrate in the productive binding orientation in the active site. The latter acted as a mediator for the substrate communications via π–π stacking interactions. In the multiple‐binding mode, the aforementioned π–π stacking interactions formed by the aromatic rings of both substrates and Phe478 drove the first substrate far away from the catalytic center, orienting in an additional binding position and going against the substrate metabolism. All these findings could give atomic insights into the detailed mechanism for the multiple‐substrate binding in human CYP2E1, providing useful information for the drug metabolism mechanism and personalized use of clinical drugs. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号