首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   13篇
  2024年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   15篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1970年   1篇
  1942年   1篇
  1941年   1篇
  1940年   1篇
  1925年   1篇
  1924年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
11.
We have investigated the effects of insulin, amino acids, and the degree of muscle loading on the phosphorylation of Ser(2448), a site in the mammalian target of rapamycin (mTOR) phosphorylated by protein kinase B (PKB) in vitro. Phosphorylation was assessed by immunoblotting with a phosphospecific antibody (anti-Ser(P)(2448)) and with mTAb1, an activating antibody whose binding is inhibited by phosphorylation in the region of mTOR that contains Ser(2448). Incubating rat diaphragm muscles with insulin increased Ser(2448) phosphorylation but did not change the total amount of mTOR. Insulin, but not amino acids, activated PKB, as evidenced by increased phosphorylation of both Ser(308) and Thr(473) in the kinase. Ser(2448) phosphorylation was also modulated by muscle-loading. Overloading the rat plantaris muscle by synergist muscle ablation, which promotes hypertrophy of the plantaris muscle, increased Ser(2448) phosphorylation. In contrast, unloading the gastrocnemius muscle by hindlimb suspension, which promotes atrophy of the muscle, decreased Ser(2448) phosphorylation, an effect that was fully reversible. Neither overloading nor hindlimb suspension significantly changed the total amount of mTOR. In summary, our results demonstrate that atrophy and hypertrophy of skeletal muscle are associated with decreases and increases in Ser(2448) phosphorylation, suggesting that modulation of this site may have an important role in the control of protein synthesis.  相似文献   
12.
13.
14.
Western blotting is a commonly used technique in biological research. A major problem with Western blotting is not the method itself, but the use of poor quality antibodies as well as the use of different experimental conditions that affect the linearity and sensitivity of the Western blot. Investigation of some conditions that are commonly used and often modified in Western blotting, as well as some commercial antibodies, showed that published articles often fail to report critical parameters needed to reproduce the results. These parameters include the amount of protein loaded, the blocking solution and conditions used, the amount of primary and secondary antibodies used, the antibody incubation solutions, the detection method and the quantification method utilized. In the present study, comparison of ubiquitinated proteins in rat heart and liver samples showed different results depending on the antibody utilized. Validation of five commercial ubiquitin antibodies using purified ubiquitinated proteins, ubiquitin chains and free ubiquitin showed that these antibodies differ in their ability to detect free ubiquitin or ubiquitinated proteins. Investigating proteins modified with interferon-stimulated gene 15 (ISG15) in young and old rat hearts using six commercially available antibodies showed that most antibodies gave different semi-quantitative results, suggesting large variability among antibodies. Evidence showing the importance of the Western blot buffer and the concentration of antibody used is presented. Hence there is a critical need for comprehensive reporting of experimental conditions to improve the accuracy and reproducibility of Western blot analysis. A Western blotting minimal reporting standard (WBMRS) is suggested to improve the reproducibility of Western blot analysis.  相似文献   
15.
The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection—the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.  相似文献   
16.
17.
Reports that elasmobranchs (sharks, skates, and rays) may havea low incidence of disease have stimulated interest in understandingthe role of their immune system in this apparent resistance.Although research in this area may potentially translate intoapplications for human health, a basic understanding of theelasmobranch immune system components and how they functionis essential. As in higher vertebrates, elasmobranch fishespossess thymus and spleen, but in the absence of bone marrowand lymph nodes, these fish have evolved unique lymphomyeloidtissues, namely epigonal and Leydig organs. As conditions forshort-term culture of elasmobranch immune cells have becomebetter understood, the opportunity to examine functional activityof cytokine-like factors derived from conditioned culture mediumhas resulted in the identification of growth inhibitory activityagainst a variety of tumor cell lines. Specifically, the mediumenriched by short term culture of bonnethead shark (Sphyrnatiburo) epigonal cells (epigonal conditioned medium, ECM) hasbeen shown to inhibit the growth of mammalian tumor cell lines,including fibrosarcoma (WEHI-164), melanoma (A375.S2), B-celllymphoma (Daudi), T-cell leukemia (Jurkat), pancreatic cancer(PANC-1), ovarian cancer (NIH:OVCAR-3), and three breast carcinomacell lines (MCF7, HCC38, Hs578T). Of the cell lines tested,WEHI-164, A375.S2, Daudi, and Jurkat cells were among the mostsensitive to growth inhibitory activity of ECM whereas PANC-1and NIH:OVCAR-3 cells were among the least sensitive. In addition,ECM demonstrated preferential growth inhibition of malignantcells in assays against two different malignant/non-malignantcell line pairs (HCC38/HCC38 BL and Hs 578T/Hs 578Bst). Separationof protein components of ECM using SDS-PAGE resulted in a veryreproducible pattern of three major bands corresponding to molecularsizes of approximately 40–42 kD, 24 kD, and 17 kD. Activityis lost after heating at 75°C for 30 min, and can be diminishedby treatment with proteinase K and protease. Activity is notaffected by treating with trypsin, DNase I or RNase A.  相似文献   
18.
The bioactive phospholipid, lysophosphatidic acid (LPA), acting through at least five distinct receptors LPA1–LPA5, plays important roles in numerous biological processes. Here we report that LPA induces osteoblastic differentiation of human mesenchymal stem cells hMSC‐TERT. We find that hMSC‐TERT mostly express two LPA receptors, LPA1 and LPA4, and undergo osteoblastic differentiation in serum‐containing medium. Inhibition of LPA1 with Ki16425 completely abrogates osteogenesis, indicating that this process is mediated by LPA in the serum through activation of LPA1. In contrast to LPA1, down‐regulation of LPA4 expression with shRNA significantly increases osteogenesis, suggesting that this receptor normally exerts negative effects on differentiation. Mechanistically, we find that in hMSC‐TERT, LPA induces a rise in both cAMP and Ca2+. The rise in Ca2+ is completely abolished by Ki16425, whereas LPA‐mediated cAMP increase is not sensitive to Ki16425. To test if LPA signaling pathways controlling osteogenesis in vitro translate into animal physiology, we evaluated the bones of LPA4‐deficient mice. Consistent with the ability of LPA4 to inhibit osteoblastic differentiation of stem cells, LPA4‐deficient mice have increased trabecular bone volume, number, and thickness. J. Cell. Biochem. 109: 794–800, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号