首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   5篇
  2020年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   11篇
  2013年   6篇
  2012年   7篇
  2011年   2篇
  2010年   9篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1980年   2篇
  1978年   2篇
排序方式: 共有101条查询结果,搜索用时 31 毫秒
91.
Full thickness skin wounds in humans heal with scars, but without regeneration of the dermis. A degradable poly(urethane urea) scaffold (PUUR), Artelon® is already used to reinforce soft tissues in orthopaedics, and for treatment of osteoarthritis of the hand, wrist and foot. In this paper we have done in vitro experiments followed by in vivo studies to find out whether the PUUR is biocompatible and usable as a template for dermal regeneration. Human dermal fibroblasts were cultured on discs of PUUR, with different macrostructures (fibrous and porous). They adhered to and migrated into the scaffolds, and produced collagen. The porous scaffold was judged more suitable for clinical applications and 4 mm Ø, 2 mm-thick discs of porous scaffold (12% w/w or 9% w/w polymer solution) were inserted intradermally in four healthy human volunteers. The implants were well tolerated and increasing ingrowth of fibroblasts was seen over time in all subjects. The fibroblasts stained immunohistochemically for procollagen and von Willebrand factor, indicating neocollagenesis and angiogenesis within the scaffolds. The PUUR scaffold may be a suitable material to use as a template for dermal regeneration.Key words: dermal regeneration, tissue engineering, polymer scaffold, wound healing, in vitro, in vivo, guided tissue regeneration, human, burns  相似文献   
92.

Background  

General protein evolution models help determine the baseline expectations for the evolution of sequences, and they have been extensively useful in sequence analysis and for the computer simulation of artificial sequence data sets.  相似文献   
93.
The mechanism of translocation of RxLR effectors from plant pathogenic oomycetes into the cytoplasm of their host is currently the object of intense research activity and debate. Here, we report the biochemical and thermodynamic characterization of the Phytophthora infestans effector AVR3a in vitro. We show that the amino acids surrounding the RxLR leader mediate homodimerization of the protein. Dimerization was considerably attenuated by a localized mutation within the RxLR motif that was previously described to prevent translocation of the protein into host. Importantly, we confirm that the reported phospholipid-binding properties of AVR3a are mediated by its C-terminal effector domain, not its RxLR leader. However, we show that the observed phospholipid interaction is attributable to a weak association with denatured protein molecules and is therefore most likely physiologically irrelevant.  相似文献   
94.

Introduction

We investigated the effects of intravenous and intratracheal administration of salbutamol on lung morphology and function, expression of ion channels, aquaporin, and markers of inflammation, apoptosis, and alveolar epithelial/endothelial cell damage in experimental pulmonary (p) and extrapulmonary (exp) mild acute respiratory distress syndrome (ARDS).

Methods

In this prospective randomized controlled experimental study, 56 male Wistar rats were randomly assigned to mild ARDS induced by either intratracheal (n = 28, ARDSp) or intraperitoneal (n = 28, ARDSexp) administration of E. coli lipopolysaccharide. Four animals with no lung injury served as controls (NI). After 24 hours, animals were anesthetized, mechanically ventilated in pressure-controlled mode with low tidal volume (6 mL/kg), and randomly assigned to receive salbutamol (SALB) or saline 0.9% (CTRL), intravenously (i.v., 10 μg/kg/h) or intratracheally (bolus, 25 μg). Salbutamol doses were targeted at an increase of ≈ 20% in heart rate. Hemodynamics, lung mechanics, and arterial blood gases were measured before and after (at 30 and 60 min) salbutamol administration. At the end of the experiment, lungs were extracted for analysis of lung histology and molecular biology analysis. Values are expressed as mean ± standard deviation, and fold changes relative to NI, CTRL vs. SALB.

Results

The gene expression of ion channels and aquaporin was increased in mild ARDSp, but not ARDSexp. In ARDSp, intravenous salbutamol resulted in higher gene expression of alveolar epithelial sodium channel (0.20 ± 0.07 vs. 0.68 ± 0.24, p < 0.001), aquaporin-1 (0.44 ± 0.09 vs. 0.96 ± 0.12, p < 0.001) aquaporin-3 (0.31 ± 0.12 vs. 0.93 ± 0.20, p < 0.001), and Na-K-ATPase-α (0.39 ± 0.08 vs. 0.92 ± 0.12, p < 0.001), whereas intratracheal salbutamol increased the gene expression of aquaporin-1 (0.46 ± 0.11 vs. 0.92 ± 0.06, p < 0.001) and Na-K-ATPase-α (0.32 ± 0.07 vs. 0.58 ± 0.15, p < 0.001). In ARDSexp, the gene expression of ion channels and aquaporin was not influenced by salbutamol. Morphological and functional variables and edema formation were not affected by salbutamol in any of the ARDS groups, regardless of the route of administration.

Conclusion

Salbutamol administration increased the expression of alveolar epithelial ion channels and aquaporin in mild ARDSp, but not ARDSexp, with no effects on lung morphology and function or edema formation. These results may contribute to explain the negative effects of β2-agonists on clinical outcome in ARDS.  相似文献   
95.
96.
Du  J; Bradley  RM 《Chemical senses》1998,23(6):683-688
Responses of acutely isolated neurons from the rostral nucleus of the solitary tract (rNST) to GABA receptor agonists and antagonists were investigated using whole-cell recording in current clamp mode. The isolated neurons retain their morphology and can be divided into multipolar, elongate and ovoid cell types. Most rNST neurons (97%), including all three cell types, respond to GABA with membrane hyperpolarization and a reduction in input resistance. The GABA(A) receptor agonist muscimol reduces neuronal input resistance in a concentration-dependent manner, whereas the GABA(B) receptor agonist baclofen had no effect on any of the neurons tested. The GABA and muscimol reversal potentials were both found to be -75 mV Both the GABA competitive antagonist picrotoxin and the GABA(A) receptor antagonist bicuculline block the effect of GABA in a concentration-dependent manner. These results suggest that GABA activates all neurons in the rNST and that inhibitory synaptic activity is important in brainstem processing of gustatory and somatosensory information.   相似文献   
97.
The intracellular survival of Plasmodium falciparum within human erythrocytes is dependent on export of parasite proteins that remodel the host cell. Most exported proteins require a conserved motif (RxLxE/Q/D), termed the Plasmodium export element (PEXEL) or vacuolar targeting sequence (VTS), for targeting beyond the parasitophorous vacuole membrane and into the host cell; however, the precise role of this motif in export is poorly defined. We used transgenic P. falciparum expressing chimeric proteins to investigate the function of the PEXEL motif for export. The PEXEL constitutes a bifunctional export motif comprising a protease recognition sequence that is cleaved, in the endoplasmic reticulum, from proteins destined for export, in a PEXEL arginine- and leucine-dependent manner. Following processing, the remaining conserved PEXEL residue is required to direct the mature protein to the host cell. Furthermore, we demonstrate that N acetylation of proteins following N-terminal processing is a PEXEL-independent process that is insufficient for correct export to the host cell. This work defines the role of each residue in the PEXEL for export into the P. falciparum -infected erythrocyte.  相似文献   
98.
Chemoreceptor cells in the vomeronasal and olfactory epithelium are replaced following experimentally induced degeneration. This study analyzes quantitatively the time course and degree of vomeronasal receptor cell replacement. Unilateral transection of the vomeronasal nerves in adult hamster was used to induce a retrograde degeneration of receptor cells in the vomeronasal organ. Histological measurement of both number of receptor cells and epithelial thickness were made for recovery times from 0 to 60 days. After nerve transection, there was a gradual degeneration of receptor cells, the number decreasing to 50% of control by day 2 and 16% by day 6. During days 7-15 maximum receptor cell replacement was observed. Cell number increased rapidly and reached a peak on day 15. At recovery times of 40-60 days, cell number returned to the control level. Epithelial thickness, however, decreased to 60-70% during the degeneration period (days 4-6) and did not return to control levels. After 40-60 days epithelial thickness remained at 70% of control. These results demonstrate that vomeronasal receptor cells are replaced following degeneration, but epithelial thickness does not return to control levels. These findings suggest that the number of replacement cells is not limited by the reduced thickness of the epithelium, and that recovery mechanisms may function to restore an optimum number of receptor cells.   相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号