首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125705篇
  免费   3232篇
  国内免费   4179篇
  2024年   47篇
  2023年   416篇
  2022年   642篇
  2021年   1772篇
  2020年   1298篇
  2019年   1522篇
  2018年   12981篇
  2017年   11477篇
  2016年   8743篇
  2015年   2705篇
  2014年   2874篇
  2013年   3054篇
  2012年   7387篇
  2011年   15422篇
  2010年   13552篇
  2009年   9655篇
  2008年   11473篇
  2007年   12826篇
  2006年   1733篇
  2005年   1702篇
  2004年   2003篇
  2003年   1942篇
  2002年   1545篇
  2001年   855篇
  2000年   697篇
  1999年   515篇
  1998年   363篇
  1997年   353篇
  1996年   329篇
  1995年   297篇
  1994年   281篇
  1993年   205篇
  1992年   286篇
  1991年   227篇
  1990年   191篇
  1989年   160篇
  1988年   124篇
  1987年   136篇
  1986年   84篇
  1985年   89篇
  1984年   96篇
  1983年   77篇
  1982年   66篇
  1981年   61篇
  1980年   33篇
  1979年   30篇
  1975年   28篇
  1972年   253篇
  1971年   281篇
  1962年   28篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
991.
Fusarium verticillioides is a fungal pathogen that is responsible for maize ear rot and stalk rot diseases worldwide. The fungus also produces carcinogenic mycotoxins, fumonisins on infested maize. Unfortunately, we still lack clear understanding of how the pathogen responds to host and environmental stimuli to trigger fumonisin biosynthesis. The heterotrimeric G protein complex, consisting of canonical Gα, Gβ and Gγ subunits, is involved in transducing signals from external stimuli to regulate downstream signal transduction pathways. Previously, we demonstrated that Gβ protein FvGbb1 directly impacts fumonisin regulation but not other physiological aspects in F. verticillioides. In this study, we identified and characterized a RACK1 (Receptor for Activated C Kinase 1) homolog FvGbb2 as a putative Gβ-like protein in F. verticillioides. The mutant exhibited severe defects not only in fumonisin biosynthesis but also vegetative growth and conidiation. FvGbb2 was positively associated with carbon source utilization and stress agents but negatively regulated general amino acid control. While FvGbb2 does not interact with canonical G protein subunits, it may associate with diverse proteins in the cytoplasm to regulate vegetative growth, virulence, fumonisin biosynthesis and stress response in F. verticillioides.  相似文献   
992.
Soil legacy effects are commonly highlighted as drivers of plant community dynamics and species co‐existence. However, experimental evidence for soil legacy effects of conditioning plant communities on responding plant communities under natural conditions is lacking. We conditioned 192 grassland plots using six different plant communities with different ratios of grasses and forbs and for different durations. Soil microbial legacies were evident for soil fungi, but not for soil bacteria, while soil abiotic parameters did not significantly change in response to conditioning. The soil legacies affected the composition of the succeeding vegetation. Plant communities with different ratios of grasses and forbs left soil legacies that negatively affected succeeding plants of the same functional type. We conclude that fungal‐mediated soil legacy effects play a significant role in vegetation assembly of natural plant communities.  相似文献   
993.
Vibrio cholerae can enter a viable but non-culturable (VBNC) state when it encounters unfavourable environments; VBNC cells serve as important reservoirs and still pose threats to public health. The genetic regulation of V. cholerae entering its VBNC state is not well understood. Here, we show a confrontation strategy adapted by V. cholerae O1 in which it utilizes a quorum sensing (QS) system to prevent transition into a VBNC state under low nutrition and temperature conditions. The upregulation of hapR resulted in a prolonged culturable state of V. cholerae in artificial sea water at 4°C, whereas the mutation of hapR led to fast entry into the VBNC state. We also observed that different V. cholerae O1 natural isolates with distinct QS functions present a variety of abilities to maintain culturability during the transition to a VBNC state. The strain groups with higher or constitutive expression of QS genes exhibit a greater tendency to maintain the culturable state during VBNC induction than those lacking QS functional groups. In summary, HapR-mediated QS regulation is associated with the transition to the VBNC state in V. cholerae. HapR expression causes V. cholerae to resist VBNC induction and become dominant over competitors in changing environments.  相似文献   
994.
Coral associated microorganisms, especially some opportunistic pathogens can utilize quorum-sensing (QS) signals to affect population structure and host health. However, direct evidence about the link between coral bleaching and dysbiotic microbiomes under QS regulation was lacking. Here, using 11 opportunistic bacteria and their QS products (AHLs, acyl-homoserine-lactones), we exposed Pocillopora damicornis to three different treatments: test groups (A and B: mixture of AHLs-producing bacteria and cocktail of AHLs signals respectively); control groups (C and D: group A and B with furanone added respectively); and a blank control (group E: only seawater) for 21 days. The results showed that remarkable bleaching phenomenon was observed in groups A and B. The operational taxonomic units-sequencing analysis shown that the bacterial network interactions and communities composition were significantly changed, becoming especially enhanced in the relative abundances of Vibrio, Edwardsiella, Enterobacter, Pseudomonas, and Aeromonas. Interestingly, the control groups (C and D) were found to have a limited influence upon host microbial composition and reduced bleaching susceptibility of P. damicornis. These results indicate bleaching's initiation and progression may be caused by opportunistic bacteria of resident microbes in a process under regulation by AHLs. These findings add a new dimension to our understanding of the complexity of bleaching mechanisms from a chemoecological perspective.  相似文献   
995.
996.
Grain size and plant architecture are critical factors determining crop productivity. Here, we performed gene editing of the MIR396 gene family in rice and found that MIR396e and MIR396f are two important regulators of grain size and plant architecture. mir396ef mutations can increase grain yield by increasing grain size. In addition, mir396ef mutations resulted in an altered plant architecture, with lengthened leaves but shortened internodes, especially the uppermost internode. Our research suggests that mir396ef mutations promote leaf elongation by increasing the level of a gibberellin (GA) precursor, mevalonic acid, which subsequently promotes GA biosynthesis. However, internode elongation in mir396ef mutants appears to be suppressed via reduced CYP96B4 expression but not via the GA pathway. This research provides candidate gene‐editing targets to breed elite rice varieties.  相似文献   
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号