首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   15篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   8篇
  2012年   18篇
  2011年   24篇
  2010年   14篇
  2009年   5篇
  2008年   20篇
  2007年   33篇
  2006年   11篇
  2005年   16篇
  2004年   11篇
  2003年   10篇
  2002年   13篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   4篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   3篇
  1967年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有306条查询结果,搜索用时 714 毫秒
41.
42.
The introduction of alien species can have a significant impact on the food preferences of native phytophagous insects. The moth Earias clorana L. has previously been considered to be monophagous, ingesting only plants in the genus Salix. In recent years, we have observed larval E. clorana feeding on Spiraea tomentosa L., an invasive shrub species in Central Europe that is native to North America. We hypothesised that this insect can feed on Spiraea tomentosa leaves with no negative effects on its growth and development, and that the leaves of Spiraea tomentosa as a source of food for E. clorana are equally as good as leaves of Salix viminalis L. Our results showed that despite significant differences in the chemical composition of the studied species’ leaves, including a much higher concentration of defence compounds (total soluble phenols and condensed tannins) in Spiraea tomentosa leaves than in those of Salix viminalis, feeding on a new host plant did not significantly affect the survival of larvae. The change in host plant had an unfavourable effect, however, on several parameters of growth and development for the larvae (masses of larvae and pupae, relative growth rates, and efficiency of conversion of ingested food). We conclude that, in comparison to Salix viminalis, Spiraea tomentosa is not a particularly favourable food for larval development. Perhaps, even without direct improvements in adult foraging efficiency, however, the costs of switching hosts may be minimised in larvae that develop on very abundant, invasive species, such as Spiraea tomentosa in Central Europe.  相似文献   
43.
We assessed the feasibility of fetal RHD and RHCE genotyping by analysis of DNA extracted from plasma samples of RhD-negative pregnant women using real-time PCR and primers and probes targeted toward RHD and RHCE genes. We analyzed 45 pregnant women in the 11th to 40th weeks of pregnancy and correlated the results with serological analysis of cord blood after delivery. Non-invasive prenatal fetal RHD exon 7, RHD exon 10, RHCE exon 2 (C allele), and RHCE exon 5 (E allele) genotyping analysis of maternal plasma samples was correctly performed in 45 out of 45 RhD-negative pregnant women delivering 24 RhD-, 17 RhC-, and 7 RhE-positive newborns. Detection of fetal RHD and the C and E alleles of RHCE gene from maternal plasma is highly accurate and enables implementation into clinical routine. We recommend performing fetal RHD and RHCE genotyping together with fetal sex determination in alloimmunized D-negative pregnancies at risk of hemolytic disease of the newborn. In case of D-negative fetus, amplification of another paternally inherited allele (SRY and/or RhC and/or RhE positivity) proves the presence of fetal DNA in maternal circulation.  相似文献   
44.
Tobacco seedlings (Nicotiana tabacum var. xanthi) were treated for 24 h with mono-(2- and 3-CBA), di-(2,5- and 3,4-CBA), and tri-(2,4,6- and 2,3,5-CBA)-chlorobenzoic acids (CBAs) and with the mixture of polychlorinated biphenyls – Delor 103, or cultivated for 1 or 2 weeks in soil polluted with the CBAs. DNA damage in nuclei of leaves and roots was evaluated by the comet assay. A significant increase in DNA damage was observed only at concentrations of CBAs that caused withering of leaves or had lethal effects within 2–4 weeks after the treatments. As the application of CBAs did not induce somatic mutations, the induced DNA migration is probably caused by necrotic DNA fragmentation and not by DNA damage resulting in genetic alteration. In contrast, the application of the monofunctional alkylating agent ethyl methanesulphonate as a positive control resulted in a dose–response increase of DNA damage and an increase of somatic mutations. Thus, the EMS-produced DNA migration is probably associated with genotoxin-induced DNA fragmentation. The data demonstrate that the comet assay in plants should be conducted together with toxicity studies to distinguish between necrotic and genotoxin-induced DNA fragmentation. The content of 2,5-CBA in tobacco seedlings was measured by reverse-phase high pressure liquid chromatography.  相似文献   
45.
Question: What is the role of mound‐building ants (Lasius flavus) in successional changes of a grassland ecosystem towards a spruce forest? Location: Slovenské Rudohorie Mountains, Slovakia; ca. 950 m a.s.l. near the Obrubovanec point (1020 m a.s.l.; 48°41′N, 19°39′E). Methods: Both chronosequence data along a successional gradient and temporal data from long‐term permanent plots were collected on ants, spruce establishment, and vegetation structure, together with additional data on spruce growth. Results: There are more spruce seedlings on ant mounds (4.72 m?2) than in the surrounding vegetation (0.81 m?2). Spruce seedlings grow faster on these mounds compared to surrounding areas. The first colonization wave of seedlings was rapid and probably occurred when grazing prevailed over mowing. Ant colony presence, mound volume, and plant species composition change along the successional gradient. Mounds become bigger when partly shaded but shrink in closed forest, when ant colonies disappear. Shade‐tolerant acidophylic species replace grassland plants both on the mounds and in surrounding areas. Conclusions: The massive occurrence of Lasius flavus anthills contributes to a runaway feedback process that accelerates succession towards forest. The effect of ants as ecosystem engineers is scale‐dependent: although they stabilize the system at the scale of an individual mound, they may destabilize the whole grassland system over a longer time scale if combined with changes in mowing regime.  相似文献   
46.
Flap endonuclease 1 (FEN1) proteins, which are present in all kingdoms of life, catalyze the sequence-independent hydrolysis of the bifurcated nucleic acid intermediates formed during DNA replication and repair. How FEN1s have evolved to preferentially cleave flap structures is of great interest especially in light of studies wherein mice carrying a catalytically deficient FEN1 were predisposed to cancer. Structural studies of FEN1s from phage to human have shown that, although they share similar folds, the FEN1s of higher organisms contain a 3′-extrahelical nucleotide (3′-flap) binding pocket. When presented with 5′-flap substrates having a 3′-flap, archaeal and eukaryotic FEN1s display enhanced reaction rates and cleavage site specificity. To investigate the role of this interaction, a kinetic study of human FEN1 (hFEN1) employing well defined DNA substrates was conducted. The presence of a 3′-flap on substrates reduced Km and increased multiple- and single turnover rates of endonucleolytic hydrolysis at near physiological salt concentrations. Exonucleolytic and fork-gap-endonucleolytic reactions were also stimulated by the presence of a 3′-flap, and the absence of a 3′-flap from a 5′-flap substrate was more detrimental to hFEN1 activity than removal of the 5′-flap or introduction of a hairpin into the 5′-flap structure. hFEN1 reactions were predominantly rate-limited by product release regardless of the presence or absence of a 3′-flap. Furthermore, the identity of the stable enzyme product species was deduced from inhibition studies to be the 5′-phosphorylated product. Together the results indicate that the presence of a 3′-flap is the critical feature for efficient hFEN1 substrate recognition and catalysis.In eukaryotic DNA replication and repair, various bifurcated nucleic acid structure intermediates are formed and must be processed by the appropriate nuclease. Two examples of biological processes that create bifurcated DNA intermediates are Okazaki fragment maturation (1, 2) and long patch excision repair (3). In both models, a polymerase executes strand-displacement synthesis to create a double-stranded DNA (dsDNA)6 two-way junction from which a 5′-flap structure protrudes. The penultimate step of both pathways is the cleavage of this flap structure to create a nicked DNA that is then ligated. Because the bifurcated DNA structures that are formed in the aforementioned processes can theoretically occur anywhere in the genome, the nuclease associated with the cleavage of 5′-flap structures in eukaryotic cells, which is called flap endonuclease 1 (FEN1), must be capable of cleavage regardless of sequence. Therefore, FEN1 nucleases, which are found in all kingdoms of life (4), have evolved to recognize substrates based upon nucleic acid structure and strand polarity (5, 6).The Okazaki fragment maturation pathway of yeast has become a paradigm of eukaryotic lagging strand DNA synthesis. In the yeast model, bifurcated intermediates with large single-stranded DNA (ssDNA) 5′-flap structures are imprecisely cleaved by DNA2 in a replication protein A -dependent manner (7). Subsequent to the DNA2 cleavage, Rad27 (yeast homologue of FEN1) cleaves precisely to generate an intermediate suitable for ligation (2). The recent discovery that human DNA2 is predominantly located in mitochondria in various human cell lines (8, 9) suggests that hFEN1 is the paramount 5′-flap endonuclease in the nuclei of human cells. This observation potentially provides a plausible rationale for why deletion of RAD27 (yeast FEN1 homologue) is tolerated in Saccharomyces cerevisiae (10), whereas deletion of FEN1 in mammals is embryonically lethal (11). Recent models wherein mice carrying a mutation (E160D) in the FEN1 gene, which was shown in vitro to alter enzymatic properties (12), have demonstrated that FEN1 functional deficiency in mice (S129 and Black 6) increases the incidence of cancer, albeit different types presumably due to genetic background (13, 14). Thus, the function of mammalian FEN1 in vivo is vital to the prevention of genomic instability. In addition to its importance in the nucleus, hFEN1 has recently been detected in mitochondrial extracts (15, 16) and implicated in mitochondrial long patch base excision repair (15). Considering the pivotal roles of hFEN1 in DNA replication and repair, it is of interest to understand how hFEN1 and homologues achieve substrate and scissile phosphate selectivity in the absence of sequence information.Since its initial discovery as a nuclease that completes reconstituted Okazaki fragment maturation (17) and subsequent rediscovery as a 5′-flap-specific nuclease (DNaseIV) from bacteria (18), mouse (19), and HeLa cells (20), FEN1 proteins ranging from phage to human have been studied biochemically, computationally, and structurally (5, 6, 21). Biochemical characterizations of FEN1 proteins from various organisms have shown that this family of nucleases can perform phosphodiesterase activity on a wide variety of substrates; however, the efficiency of catalysis on various substrates differs among the species. For instance, phage FEN1s prefer pseudo-Y substrates (22, 23), whereas the archaeal and eukaryotic FEN1s prefer 5′-flap substrates (21, 24, 25), which have two dsDNA domains, one upstream and downstream of the site of cleavage, and a 5′-ssDNA protrusion (Fig. 1A). Primary sequence analysis indicates that FEN1 proteins share characteristic N-terminal (N) and Intermediate (I) “domains,” which harbor the highly conserved carboxylate residues that bind the requisite divalent metal ions (2628). Structural studies of FEN1 nucleases from phage to humans (22, 2936), have shown that the N and I domains comprise a single nuclease core domain consisting of a mixed, six- or seven-stranded β-sheet packed against an α-helical structure on both sides. The α-helices on either side of the β-sheet are “bridged” by a helical arch that spans the active site groove (supplemental Fig. S1). On one side of the β-sheet, the α-helical bundle (αb1) creates the floor of the active site and a DNA binding motif (helix-3-turn-helix) (32). Similarly, the opposite α-helical bundle (αb2) has also been observed to interact with DNA (35). Based on site-directed mutagenesis studies with T5 phage FEN1 (T5FEN1) (37) and hFEN1 (38, 39), and crystallographic studies of T4 phage FEN1 (T4FEN1) (22) and Archaeoglobus fulgidus FEN1 (aFEN1) (35) in complex with DNA, a general model for how FEN1 proteins recognize flap DNA has emerged. The helix-3-turn-helix motif is involved in downstream dsDNA binding, whereas the upstream dsDNA domain is bound by αb2. The helical arch is likely involved in 5′-flap binding (22).Open in a separate windowFIGURE 1.Secondary structure schematics of hFEN1 substrates. A, illustration of a general flap substrate created using a bimolecular approach whereby a template strand (T-strand), which partially folds into a hairpin, anneals with the duplex strand (d-strand). The T-strand hairpin creates the upstream dsDNA domain, whereas the d-strand base pairs with the T-strand to create the downstream dsDNA domain. The flap or any other structure is created by addition of nucleotides to the 5′-end of the d-strand. The interface between the upstream and downstream dsDNA domains may be viewed as a derivative of a two-way junction (74). Annealing of either the F(5), E, or G(15) d-strands with the T3F T-strand results in the formation of a (B) double flap substrate (Flap of 5-nt d-strand paired with a Template with a 3′-Flap, F(5)·T3F), C, exonuclease substrate with a 3′-extrahelical nucleotide (EXO d-strand paired with a Template with a 3′-Flap, E·T3F), and a D, fork-GEN substrate with a 3′-extrahelical nucleotide and a 15-nt ssDNA gap capped by a 23-nt hairpin structure (fork-Gap of 15-nt d-strand paired with a Template with a 3′-Flap, G(15)·T3F). E, annealing the F(5) d-strand with the T oligonucleotide creates a single flap (Flap of 5-nt d-strand paired with a Template, F(5)·T).Unlike phage FEN1s, studies of FEN1s from eubacterial (40), archaeal (21), and eukaryotic origins (41) have shown that the addition of a 3′-extrahelical nucleotide (3′-flap) to the upstream duplex of a 5′-flap substrate results in a rate enhancement and an increase in cleavage site specificity. Moreover, substrates possessing a 3′-flap, which mimic physiological “equilibrating flaps,” were cleaved exactly one nucleotide into the downstream duplex, thereby resulting in 5′-phosphorylated dsDNA product that was a suitable substrate for DNA ligase I (21, 41). As postulated by Kaiser et al. (21), the structure of an archaeal FEN1 in complex with dsDNA with a 3′-overhang showed that the protein contains a cleft adjacent to the upstream dsDNA binding site that binds the 3′-flap by means of van der Waals and hydrogen bonding interactions with the sugar moiety (35). Once the residues associated with 3′-flap binding were identified, sequence alignment analyses showed that the amino acid residues in the 3′-flap binding pocket are highly conserved from archaea to human. Furthermore, mutation of the conserved amino acid residues in the 3′-flap binding pocket of hFEN1 resulted in reduced affinity for and cleavage specificity on double flap substrates (42). Although the effects of the addition of a 3′-flap to substrates on hFEN1 catalysis are known qualitatively, a detailed understanding of the relationship between changes in catalytic parameters and rate enhancement by the presence of a 3′-flap is unknown. Here, we describe a detailed kinetic analysis of hFEN1 using four well characterized DNA substrates and show that the presence of a 3′-flap on a substrate not only contributes to substrate binding (42), but also increases multiple and single turnover rates of reaction in the presence of near physiological monovalent salt concentrations. We also demonstrate that, like T5FEN1, hFEN1 is rate-limited by product release, and thus multiple turnover rates at saturating concentrations of substrate are predominantly a reflection of product release and not catalysis as was previously concluded (39). Furthermore, this study provides insight into the mechanism of hFEN1 substrate recognition.  相似文献   
47.
Leptin, a hormone regulating body weight, food intake, and metabolism, is associated with activation of immune cells and inflammation. In this study we analyzed levels of leptin, adrenocorticotropic hormone (ACTH), corticosterone, interleukin 1beta (IL-1beta), and nitric oxide (NO) production on days 10 and 22 of adjuvant arthritis (AA) in male Long Evans rats to ascertain possible relationship of leptin with its modulators during the early and late phases of chronic inflammation. The circulating leptin levels were significantly reduced already on day 10 of AA compared to controls (1.97+/-0.22 ng/ml vs. 3.08+/-0.25 ng/ml, p<0.05); on day 22 no significant further drop was observed (1.06+/-0.21 ng/ml). Leptin mRNA in epididymal fat tissue was reduced in arthritic animals compared to controls on day 22 (0.61+/-0.09 vs. 1.30+/-0.1 arbU/GAPDH (p<0.01). IL-1beta concentration in spleen was enhanced on day 10 of AA (24.55+/-4.67 pg/100 microg protein vs. 14.33+/-1.71 pg/100 microg protein; p<0.05); on day 22 it did not differ from controls. ACTH and corticosterone levels were significantly elevated only on day 22 of AA (ACTH: 306.17+/-42.22 pg/ml vs. 157.61+/-23.94 pg/ml; p<0.05; corticosterone: 5.24+/-1.38 microg/100 ml vs. 1.05+/-0.23 microg/100 ml; p<0.01). Nitrate levels were enhanced similarly on days 10 (49.86+/-1.83 microM) and 22 of AA (43.58+/-2.17 microM), compared to controls (23.42+/-1.39 microM, p<0.001). These results show that corticosterone does not stimulate leptin production during AA. The suppression of leptin may be a consequence of permanent activation of NO, IL-1beta, and of lower weight gain. Circulating leptin does not seem to play a key role in the progression of chronic arthritis.  相似文献   
48.

Background

White-nose syndrome is a disease of hibernating insectivorous bats associated with the fungus Geomyces destructans. It first appeared in North America in 2006, where over a million bats died since then. In Europe, G. destructans was first identified in France in 2009. Its distribution, infection dynamics, and effects on hibernating bats in Europe are largely unknown.

Methodology/Principal Findings

We screened hibernacula in the Czech Republic and Slovakia for the presence of the fungus during the winter seasons of 2008/2009 and 2009/2010. In winter 2009/2010, we found infected bats in 76 out of 98 surveyed sites, in which the majority had been previously negative. A photographic record of over 6000 hibernating bats, taken since 1994, revealed bats with fungal growths since 1995; however, the incidence of such bats increased in Myotis myotis from 2% in 2007 to 14% by 2010. Microscopic, cultivation and molecular genetic evaluations confirmed the identity of the recently sampled fungus as G. destructans, and demonstrated its continuous distribution in the studied area. At the end of the hibernation season we recorded pathologic changes in the skin of the affected bats, from which the fungus was isolated. We registered no mass mortality caused by the fungus, and the recorded population decline in the last two years of the most affected species, M. myotis, is within the population trend prediction interval.

Conclusions/Significance

G. destructans was found to be widespread in the Czech Republic and Slovakia, with an epizootic incidence in bats during the most recent years. Further development of the situation urgently requires a detailed pan-European monitoring scheme.  相似文献   
49.
The paper describes macro- and micromorphological features of Geomyces destructans, the fungus which is associated with the white-nose syndrome (WNS) bat disease in North America. This species was isolated from hibernating Myotis myotis at two sites in Malé Karpaty Mts (the old mine Pod medveđou skalou and the Zbojnícka Cave) in Western Slovakia. Besides Geomyces destructans, the species Isaria farinosa, Cladosporium macrocarpum and Alternaria tenuissima were isolated, too. All strains are deposed at the Department of Soil Science, Comenius University in Bratislava (Slovakia) and in CMF at Institute of Soil Biology in Českějovice (Czech Republic).  相似文献   
50.
Metals in Wine—Impact on Wine Quality and Health Outcomes   总被引:1,自引:0,他引:1  
Metals in wine can originate from both natural and anthropogenic sources, and its concentration can be a significant parameter affecting consumption and conservation of wine. Since metallic ions have important role in oxide-reductive reactions resulting in wine browning, turbidity, cloudiness, and astringency, wine quality depends greatly on its metal composition. Moreover, metals in wine may affect human health. Consumption of wine may contribute to the daily dietary intake of essential metals (i.e., copper, iron, and zinc) but can also have potentially toxic effects if metal concentrations are not kept under allowable limits. Therefore, a strict analytical control of metal concentration is required during the whole process of wine production. This article presents a critical review of the existing literature regarding the measured metal concentration in wine, methods applied for their determination, and possible sources, as well as their impact on wine quality and human health. The main focus is set on aluminum, arsenic, cadmium, chromium, copper, iron, manganese, nickel, lead, and zinc, as these elements most often affect wine quality and human health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号