首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   14篇
  2023年   2篇
  2021年   4篇
  2019年   2篇
  2016年   3篇
  2015年   10篇
  2013年   8篇
  2012年   9篇
  2011年   6篇
  2010年   6篇
  2009年   6篇
  2008年   7篇
  2007年   10篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1978年   2篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
  1965年   2篇
  1963年   4篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1955年   2篇
  1937年   1篇
  1936年   1篇
  1934年   2篇
  1933年   1篇
  1932年   6篇
  1875年   1篇
排序方式: 共有165条查询结果,搜索用时 31 毫秒
121.
Studies were conducted on the enumeration of 7 groups of fecal microflora including total aerobes, total anaerobes, coliforms, lactobacilli, staphylococci, streptococci and yeasts and molds of 18-day old piglets. These pigs were early weaned (21 days) on different modifications of an early-weaning ration. The above mentioned microflora were enumerated again when some of the pigs in a replicate started scouring. The occurrence of diarrhea was always associated with significant increases in the numbers of coliforms and corresponding decreases in the lactobacilli counts. No other single group of fecal microflora differed in the scouring and non-scouring animals. The composition of the early-weaning ration offered to the animals did not, in itself, influence the fecal microflora to any appreciable extent. In another series of experiments, enumeration of coliforms and lactobacilli was conducted on samples obtained from different segments of the intestinal tracts of scouring and non-scouring pigs. Increased numbers of coliforms and decreased numbers of lactobacilli were observed at all levels of the intestinal tracts of the scouring animals. However, these changes were more marked in the duodenal samples than in those obtained from other parts of the intestine.  相似文献   
122.
Ecological diversity indices are frequently applied to molecular profiling methods, such as terminal restriction fragment length polymorphism (T-RFLP), in order to compare diversity among microbial communities. We performed simulations to determine whether diversity indices calculated from T-RFLP profiles could reflect the true diversity of the underlying communities despite potential analytical artifacts. These include multiple taxa generating the same terminal restriction fragment (TRF) and rare TRFs being excluded by a relative abundance (fluorescence) threshold. True community diversity was simulated using the lognormal species abundance distribution. Simulated T-RFLP profiles were generated by assigning each species a TRF size based on an empirical or modeled TRF size distribution. With a typical threshold (1%), the only consistently useful relationship was between Smith and Wilson evenness applied to T-RFLP data (TRF-Evar) and true Shannon diversity (H′), with correlations between 0.71 and 0.81. TRF-H′ and true H′ were well correlated in the simulations using the lowest number of species, but this correlation declined substantially in simulations using greater numbers of species, to the point where TRF-H′ cannot be considered a useful statistic. The relationships between TRF diversity indices and true indices were sensitive to the relative abundance threshold, with greatly improved correlations observed using a 0.1% threshold, which was investigated for comparative purposes but is not possible to consistently achieve with current technology. In general, the use of diversity indices on T-RFLP data provides inaccurate estimates of true diversity in microbial communities (with the possible exception of TRF-Evar). We suggest that, where significant differences in T-RFLP diversity indices were found in previous work, these should be reinterpreted as a reflection of differences in community composition rather than a true difference in community diversity.  相似文献   
123.
Eating raw oysters can come with serious health risks, as oysters can potentially contain bacteria of the Vibrio genus that cause food-borne infections. Vibrio bacteria are concentrated by oysters and, when consumed, infections can result with severe symptoms such as diarrhoea, lesions on the extremities, or even death. Vibrio spp. concentrations are strongly affected by season, location, and other factors such as temperature and salinity. Previous research in North Carolina oysters has been conducted on wild and farmed oysters but not at the same time. Farmed, or aquaculture raised, oysters are considerably different from wild oysters and could possibly pose different health risks. Farmed oysters are handled, raised from seed, and often grown using suspended grow-out systems called ‘floating cages’. Therefore, farmed oysters can be grown at the surface of the estuary, while wild oysters typically grow at the bottom of the water column. This project compared the concentrations of Vibrio spp. in suspended, farm-grown oysters and wild oysters at three sites, using a paired approach with farmed and wild oysters sampled in proximity. An important part of this comparison was identifying pathogenicity of the bacteria isolated from the samples. Distinction was made between off- and on-bottom farming. Interestingly, on-bottom oysters had more pathogenic V. vulnificus than off-bottom oysters.  相似文献   
124.
125.
Assembly of fungal communities remains poorly understood in part because of the daunting range of spatial scales that may be involved in this process. Here, we use individual leaves as a natural sampling unit, comprising spatially distinct habitat and/or resource patches with unique histories and suites of resources. Spatial patterns in fungal beta diversity were tested for consistency with the metacommunity paradigms of species sorting and neutral dynamics. Thirty senesced leaves were collected from the forest floor (O horizon) in replicate upland forest, riparian forest and vernal pool habitats. We quantified spatial distance between leaves, and fungal community composition was assayed by terminal restriction fragment length polymorphism. Significant distance‐decay relationships were detected at all but one upland site. This is the first study where changes in fungal community composition were quantified across discrete adjacent habitat patches, providing evidence that fungal distance decay is operational at a scale of centimetres. Although leaves of differing lignin contents were sampled from each site, leaf type was not consistently important in explaining variation in fungal community composition. However, depth of a leaf within the forest floor significantly influenced community composition at five of six sites. Environmental heterogeneity associated with depth could include moisture gradients, relative influence of soil or spore colonization, and impact of forest floor biotic community (i.e. collembola and earthworms). Because the influence of spatial distance and depth on fungal community composition could not be disentangled, both species‐sorting and neutral processes may be embedded within the distance‐decay relationships that we found.  相似文献   
126.
127.
Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods.  相似文献   
128.
Amplification of a particular DNA fragment from a mixture of organisms by PCR is a common first step in methods of examining microbial community structure. The use of group-specific primers in community DNA profiling applications can provide enhanced sensitivity and phylogenetic detail compared to domain-specific primers. Other uses for group-specific primers include quantitative PCR and library screening. The purpose of the present study was to develop several primer sets targeting commonly occurring and important groups. Primers specific for the 16S ribosomal sequences of Alphaproteobacteria, Betaproteobacteria, Bacilli, Actinobacteria, and Planctomycetes and for parts of both the 18S ribosomal sequence and the internal transcribed spacer region of Basidiomycota were examined. Primers were tested by comparison to sequences in the ARB 2003 database, and chosen primers were further tested by cloning and sequencing from soil community DNA. Eighty-five to 100% of the sequences obtained from clone libraries were found to be placed with the groups intended as targets, demonstrating the specificity of the primers under field conditions. It will be important to reevaluate primers over time because of the continual growth of sequence databases and revision of microbial taxonomy.  相似文献   
129.

Background

Rhizodeposition is the release of organic compounds from plant roots into soil. Positive relationships between rhizodeposition and soil microbial biomass are commonly observed. Rhizodeposition may be disrupted by increasing drought however the effects of water stress on this process are not sufficiently understood.

Scope

We aimed to provide a synthesis of the current knowledge of drought impacts on rhizodeposition. The current scarcity of well-defined studies hinders a quantitative meta-analysis, but we are able to identify the main effects of water stress on this process and how changes in the severity of drought may produce different responses. We then give an overview of the links between rhizodeposition and microbial communities, and describe how drought may disrupt these interactions.

Conclusions

Overall, moderate drought appears to increase rhizodeposition per gram of plant, but under extreme drought rhizodeposition is more variable. Concurrent decreases in plant biomass may lessen the total amount of rhizodeposits entering the soil. Effects on rhizodeposition may be strongly species-dependant therefore impacts on soil communities may also vary, either driving subsequent changes or conferring resilience in the plant community. Advances in the study of rhizodeposition are needed to allow a deeper understanding of this plant-soil interaction and how it will respond to drought.
  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号