首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   2篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   7篇
  2012年   10篇
  2011年   7篇
  2010年   2篇
  2008年   3篇
  2007年   6篇
  2004年   1篇
  2003年   1篇
  1993年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
  1971年   3篇
  1969年   2篇
  1968年   1篇
排序方式: 共有78条查询结果,搜索用时 437 毫秒
71.
One of the most critical parameters in cartilage tissue engineering which influences the clinical success of a repair therapy is the ability to match the load-bearing capacity of the tissue as it functions in vivo. While mechanical forces are known to positively influence the development of cartilage matrix architecture, these same forces can induce long-term implant failure due to poor integration or structural deficiencies. As such, in the design of optimal repair strategies, it is critical to understand the timeline of construct maturation and how the elaboration of matrix correlates with the development of mechanical properties. We have previously characterized a scaffold-free method to engineer cartilage utilizing primary chondrocytes cultured at high density in hydrogel-coated culture vessels to promote the formation of a self-aggregating cell suspension that condenses to form a cartilage-like biomass, or cartilage tissue analog (CTA). Chondrocytes in these CTAs maintain their cellular phenotype and deposit extracellular matrix to form a construct that has characteristics similar to native cartilage; however, the mechanical integrity of CTAs had not yet been evaluated. In this study, we found that chondrocytes within CTAs produced a robust matrix of proteoglycans and collagen that correlated with increasing mechanical properties and decreasing cell-matrix ratios, leading to properties that approached that of native cartilage. These results demonstrate a unique approach to generating a cartilage-like tissue without the complicating factor of scaffold, while showing increased compressive properties and matrix characteristics consistent with other approaches, including scaffold-based constructs. To further improve the mechanics of CTAs, studies are currently underway to explore the effect of hydrodynamic loading and whether these changes would be reflective of in vivo maturation in animal models. The functional maturation of cartilage tissue analogs as described here support this engineered cartilage model for use in clinical and experimental applications for repair and regeneration in joint-related pathologies.  相似文献   
72.
73.
74.
The mosquito repellent Nepetalactone rich Nepeta cataria L. (catmint) plant has a variety of therapeutic and industrial potential. Reports on the genetic diversity of N. cataria germplasm are minimal globally and need attention for adding a new variety into commercial cultivation. The present study, therefore, assessed the genetic diversity among thirteen half-sib genotypes of N. cataria using agro economic and phytochemical traits. The experimental set has shown substantial variation for agro economic traits studied. Among all the studied populations, fresh herb-based essential oil content ranged from 0.1 % to 0.3 %, with a grand mean of 1.67 %. However, the estimated oil yield ranged from 44.4 kg/h to 120.73 kg/h with an average of 71.34 kg/h. Among the eleven phytochemical constituents detected in different concentrations in the essential oil of experimental sets, 4aα,7α,7aα-Nepetalactone (67.9–87.5 %) constituted the significant proportion of essential oil. Altogether, based on mean comparison, the population NC8 was found to be promising for estimated oil yield and 4aα,7α,7aα-Nepetalactone content. The greater heritability estimates (h2bs) and genetic advance as percent of mean (GAM) were observed for important economic parameters, i. e., oil content, herb yield, and oil yield. The cluster analysis revealed the least interactions between various agro economic and phytochemical variables. The microscopic study of trichome showed a positive correlation of abaxial leaf surface with essential oil content. The promising antimicrobial potential of catmint oil was also observed against human health-related pathogens. The results infer from our study provide valuable insight for genetic improvement and product development in the catmint germplasm.  相似文献   
75.
In Vitro Cellular & Developmental Biology - Plant - Eulophia dabia (D. Don) Hochr is an endemic, critically endangered, terrestrial orchid species having profound importance in traditional...  相似文献   
76.
77.
78.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号