首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   52篇
  2021年   4篇
  2020年   2篇
  2018年   4篇
  2017年   2篇
  2016年   7篇
  2015年   13篇
  2014年   14篇
  2013年   80篇
  2012年   25篇
  2011年   40篇
  2010年   13篇
  2009年   11篇
  2008年   37篇
  2007年   40篇
  2006年   40篇
  2005年   38篇
  2004年   30篇
  2003年   45篇
  2002年   25篇
  2001年   11篇
  2000年   13篇
  1999年   4篇
  1998年   4篇
  1997年   9篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   15篇
  1992年   20篇
  1991年   21篇
  1990年   17篇
  1989年   21篇
  1988年   8篇
  1987年   8篇
  1986年   13篇
  1985年   7篇
  1984年   6篇
  1983年   8篇
  1982年   3篇
  1981年   8篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   5篇
  1976年   2篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
  1969年   1篇
  1967年   2篇
排序方式: 共有726条查询结果,搜索用时 15 毫秒
41.
The hydrolysis of olive oil by the Humicola lipase was inhibited by the addition of n-alcohols, fatty acids and surface active agents. The inhibition of n-alcohols was overcomed by the addition of more substrate but not by the addition of more enzyme. The inhibition of fatty acids and bile salts was eliminated by adding calcium ion. It was concluded that the inhibition of the Humicola lipase by n-alcohols, fatty acids and bile salts was not due to inactivation of the enzyme directly but due to the displacing of the substrate from the oil/water interface, thus blocking the enzyme from the substrate.  相似文献   
42.
Rustmicin, a new antibiotic active against the wheat stem rust fungus, was isolated from a cultured broth of Micromonospora chalcea 980-MC1. Rustmicin showed strong inhibitory activity against the wheat stem rust fungus both in vitro and in pot tests in a greenhouse with MIC being 1 and 0.8/ig/ml, respectively. Its structure was determined by NMR spectroscopy to be a new 14-membered macrolide antibiotic lacking sugar substituents.  相似文献   
43.
The Oxygen activating mechanism of Fusarium lipoxygenase, a heme-containing dioxygenase, was studied. The enzyme did not require any cofactors, such as H2O2, however, both superoxide dismutase and catalase inhibited linoleate peroxidation by Fusarium lipoxygenase. A low concentration of H2O2 caused a distinct acceleration in enzymatic peroxidation. These results indicate that both O2? and H2O2 are produced as essential intermediates of oxygen activation during formation of linoleate hydroperoxides by Fusarium lipoxygenase. This peroxidation reaction was also prevented by scavengers of singlet oxygen (1O2), but not by scavengers of hydroxy 1 radical (OH). Generation of O2? in the enzyme reaction was detected by its ability to oxidize epinephrine to adrenochrome. Moreover, the rate of peroxide formation was greater in the D2O than in the H2O buffer system. These results suggest that the Haber–Weiss reaction (O2?+H2O2→OH?+OH·+1O2) is taking part in linoleate peroxidation by Fusarium lipoxygenase, and the 1O2 evolved could be responsible for the peroxidation of linoleate. H2O2 produced endogenously in the enzyme reaction might act as an activating factor for the enzyme. This possible mechanism of oxygen activation can explain the absence of a need for exogenous cofactors with Fusarium lipoxygenase in contrast to an other heme-containing dioxygenase, tryptophan pyrrolase, which requires an exogenous activating factor, such as H2O2.  相似文献   
44.
Two kinds of α-galactosidase-producing microorganisms, strain No. 31–2 and strain No. 7–5, have been isolated from soil and subjected to a determinative study. On the basis of the morphological and physiological characters, the strain No. 31–2 was identified to be belonged to genus Micrococcus and the strain No. 7–5 to genus Bacillus. The former strain, Micrococcus sp. No. 31–2, produced exclusively an intracellular α-galactosidase, and the latter one, Bacillus sp. No. 7–5, secreted the enzyme into culture medium. The cell growth and enzyme production of both strains were observed to reach the maximum under an alkaline culture condition. The intracellular α-galactosidase of Micrococcus sp. No. 31–2 was inducible by galactose, melibiose, and raffinose, while the α-galactosidase of Bacillus sp. No. 7–5 was produced constitutively.  相似文献   
45.
A mutant of Streptomyces fradiae which requires oleic acid for neomycin formation was isolated and the effects of exogenous fatty acids and other additives on the formation of neomycin were studied. Palmitic acid and high concentration of sodium ions could replace oleic acid in neomycin formation. The fatty acid spectrum of the mutant strain ST–5B was quite different from that of the parent strain 3123. The major fatty acid components of the mutant and the parent were anteiso 15:0 and iso 16: 0, respectively. However the fatty acid composition of the mutant was changed from the anteiso 15: 0-type to the parental iso 16: 0-type by the supplement of oleic acid or high concentration of sodium ions in the medium. In the case of palmitic acid, the major fatty acid component of the mutant cells was changed from anteriso 15: 0 to normal 16:0. The role of these additives in neomycin formation by the mutant is discussed.  相似文献   
46.
A structural study of the water-soluble dextran made by Leuconostoc mesenteroides strain C (NRRL B-1298) was conducted by enzymic degradation and subsequent 13C-NMR analysis of the native dextran and its limit dextrins. The α-l,2-debranching enzyme removed almost all of the branched D-glucose residues, and gave a limit dextrin having a much longer sequence of the internal chain length (degree of linearity: n = 24.5 compared with the value of n = 3.3 for the native dextran). The degree of hydrolysis with debranching enzyme corresponded to the content of α-1,2-linkages determined by chemical methods, which suggested that most of the α-l,2-linkages in the dextran B-1298 constituted branch points of a single D-glucose residue. A synergistic increase of susceptibility of the dextran B-1299 was observed by simultaneous use of debranching enzyme and endodex-tranase. 13C-NMR spectral analysis indicated the similarity of structure of dextran B-1298 to that of B-1396, rather than that of B-1299. Occurrence of α-l,3-linkages in the limit dextrin was supported by a newly visualized chemical shift at 83.7 ppm.  相似文献   
47.
Two compounds were isolated from alfalfa. Their structures were determined as benzoyl meso-tartaric acid (I) and benzoyl (S), (–)-malic acid (II) respectively. They were found in nature for the first time.  相似文献   
48.
Shuttle vector pMV301 was constructed by ligation of pMV102 found in A. aceti subsp. xylinum NBI 1002 to E. coli plasmid pACYC177. It is 6.0 kb in size, has unique restriction sites suitable for insertion of a foreign DNA fragment and confers ampicillin resistance to the Acetobacter host. This vector transforms A. aceti subsp. aceti 10-80S1 and industrial vinegar producer A. aceti subsp. xylinum NBI 1002 as well as E. coli. Various chimeric plasmids were also constructed by ligation of pMV102 to E. coli plasmids to examine the expression of drug resistance genes. In addition to the ampicillin resistance gene, resistance genes for kanamycin, chloramphenicol and tetracycline derived from E. coli plasmids were expressed in Acetobacter. Most of the constructed shuttle vectors were stably maintained in Acetobacter.  相似文献   
49.
An improved method for transformation of derivative strains of A. aceti subsp. aceti No. 1023 with plasmid DNA has been developed. Addition of polyethylene glycol or dimethylsulfoxide increased the transformation efficiency by a factor of about ten. In the presence of PEG 4,000, various transformation conditions were examined. Cells were also made transformation competent by treatment with other divalent cations than Ca2+ . The pH of the buffer did not affect the efficiency significantly. The growth phase influenced the efficiency. Mutants showing high competence were derived by treatment with N-methyl-N′-nitro-N-nitrosoguanidine. By the improved method using the highly transformable mutants, a transformation efficiency of approximately 105 transformants per γg plasmid DNA was achieved.  相似文献   
50.
Purified AFS (anti-filamentous phage substance) produced by Streptomyces lavendulae AM–7a showed specific antiphage activity against the male specific, deoxyribonucleic acid-containing filamentous phages of Escherichia coli without any activity against other DNA-phages nor the male-specific ribonucleic acid-containing phages of E. coli. AFS brought about no inactivation of free particles of filamentous phage, fl, nor the receptor of the host cells for the phage, while it showed strong killing effect against the fl-infected host cells at the concentration below 0.01 μg/ml. Antiphage activity of AFS might be due to its highly specific killing effect only on the E. coli cells infected with the filamentous DNA phages, while it exerted no effect on the growth of the unifected E. coli nor other microorganisms. Killing by AFS seemed to require the energy metabolism of the phage-infected host cells. Macro-molecular synthesis and respiration of the infected host cells were inhibited soon after the addition of small amounts of AFS without any cell lysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号