首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   7篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   12篇
  2014年   10篇
  2013年   7篇
  2012年   7篇
  2011年   11篇
  2010年   4篇
  2009年   6篇
  2008年   14篇
  2007年   6篇
  2006年   5篇
  2005年   9篇
  2004年   6篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1984年   1篇
  1977年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有140条查询结果,搜索用时 218 毫秒
61.
We investigated life history trade-offs related to thermal tolerance in two sibling species, commonly referred to as the B and Q biotypes, of Bemisia tabaci. We focused on basal resistance to short unpredicted heat stress, which reflects the organism investment, during both optimal and stressful conditions, in insuring its survival. At 27 °C, the relative reproductive performance of B was seven-fold higher than Q. After short stress of 42 °C, these differences increased to 23-fold. A turnover took place after short stress of 43 and 45 °C, in which Q adults performed better. As the expression of the analysed Hsp70 and other stress-related genes was found to be higher in the Q species, our data likely reflects two different strategies for optimal performance. B lowers soma protection for achieving maximum reproduction ('direct inhibitory' trade-off model), whereas Q invests significant resources in being always 'ready' for a challenge.  相似文献   
62.
The role glucosinolates play in defending plants against phloem feeders such as aphids and whiteflies is currently not clear as these herbivores may avoid bringing glucosinolates from the phloem sap into contact with myrosinase enzymes. Here, we investigated the effects of high levels of aliphatic and indolic glucosinolates on life history traits and detoxification gene expression in two sibling species, B and Q, of the whitefly Bemisia tabaci. High levels of aliphatic glucosinolates decreased the average oviposition rate of both species and reduced the survival and developmental rate of Q nymphs. High levels of indolic glucosinolates decreased the oviposition rate and survival of nymphal stages of the B species and the developmental rate of both species. Molecular analyses revealed two major asymmetries between the B and Q species. First, specific GST genes (BtGST1 and BtGST2) were significantly induced during exposure to indolic glucosinolates only in Q. This may reflect the genes putative involvement in indolic glucosinolates detoxification and explain the species' good performance on plants accumulating indolic glucosinolates. Second, the constitutive expression of eight of the 10 detoxification genes analysed was higher in the Q species than in the B species. Interestingly, four of these genes were induced in B in response to high levels of glucosinolates. It seems, therefore, that the B and Q species differ in their 'optimal defence strategy'. B utilizes inducible defences that are profitable if the probability of experiencing the stress is small and its severity is low, while Q invests significant resources in being always 'ready' for a challenge.  相似文献   
63.
64.
Prolonged limb immobilization, which is often the outcome of injury and illness, results in the atrophy of skeletal muscles. The basis of muscle atrophy needs to be better understood in order to allow development of effective countermeasures. The present study focused on determining whether skeletal muscle stem cells, satellite cells, are directly affected by long-term immobilization as well as on investigating the potential of pharmacological and physiological avenues to counterbalance atrophy-induced muscle deterioration. We used external fixation (EF), as a clinically relevant model, to gain insights into the relationships between muscle degenerative and regenerative conditions to the myogenic properties and abundance of bona fide satellite cells. Rats were treated with tetracycline (Tet) through the EF period, or exercise trained on a treadmill for 2 weeks after the cessation of the atrophic stimulus. EF induced muscle mass loss; declined expression of the muscle specific regulatory factors (MRFs) Myf5, MyoD, myogenin, and also of satellite cell numbers and myogenic differentiation aptitude. Tet enhanced the expression of MRFs, but did not prevent the decline of the satellite cell pool. After exercise running, however, muscle mass, satellite cell numbers (enumerated through the entire length of myofibers), and myogenic differentiation aptitude (determined by the lineal identity of clonal cultures of satellite cells) were re-gained to levels prior to EF. Together, our results point to Tet and exercise running as promising and relevant approaches for enhancing muscle recovery after atrophy.  相似文献   
65.
Marrow-derived stroma cells (MSCs) can differentiate into multiple lineages including myogenic cells. However, the molecular mechanisms that direct MSCs to each differentiation pathway are poorly understood. Our study was designed to gain insights into the potential regulatory pathways that may assist in defining MSC commitment and differentiation properties. This will delineate the similarities or differences in the expression of genes between several cell types of mesenchymal origin. In this study, we established in vitro models, which allow following the discrete stages of differentiation of cardio- and myogenic-cells compared with MSC. Gene expression of each cell type at several stages of their differentiation path was evaluated by means of Affymetrix Gene Chips. Bioinformatic clustering of genes confirmed that with time in culture the myogenic cells ceased proliferating and commenced with differentiation. The expression profile analysis revealed the similarity and differences between myogenic cells and MSCs. This research compared at the molecular levels snapshots of gene expression patterns and elaborated on the overlap or differences between the analyzed cellular systems. Our results shed light on gene profiles of cells throughout their differentiation pathways. Establishing the gene signature of the differentiation process of cells that belong to several mesenchymal lineages may contribute to the understanding of molecular pathways that underlay mesenchymal tissue remodeling.  相似文献   
66.
The ontogenetic changes of MAAs in the soft coral Heteroxenia fuscescens was studied in relation to their symbiotic state (azooxanthellate vs. zooxanthellate) under different temperature conditions in the Gulf of Eilat, northern Red Sea. The HPLC chromatograms for extracts of the planulae, azoo- and zooxanthellate primary polyps of H. fuscescens from all dates of collection yielded a single peak at 320 nm that has been identified as the compound palythine. Concentration of palythine in planulae at 23 °C was 7.57 ± 1 nmol mg− 1 protein and at 28 °C reached 17.29 ± 1 nmol × mg− 1 protein. Concentration of palythine in azooxanthellate primary polyps was 16.4 ± 3 nmol × mg− 1 protein and 28.37 ± 2.8 nmol × mg− 1 protein at 23 °C and 28 °C respectively. The palythine concentration for zooxanthellate primary polyps at 23 °C was 13 ± 3 nmol × mg− 1 protein and at 28 °C 32.7 ± 2 nmol mg− 1 protein. Palythine concentrations were significantly higher at 28 °C in the different animal groups and correlated linearly with the ambient collection temperature. This study shows for the first time that UVR and temperature act synergistically and affect the MAA levels of early life-history stages of soft corals.  相似文献   
67.
The cell lineage tree of a multicellular organism represents its history of cell divisions from the very first cell, the zygote. A new method for high-resolution reconstruction of parts of such cell lineage trees was recently developed based on phylogenetic analysis of somatic mutations accumulated during normal development of an organism. In this study we apply this method in mice to reconstruct the lineage trees of distinct cell types. We address for the first time basic questions in developmental biology of higher organisms, namely what is the correlation between the lineage relation among cells and their (1) function, (2) physical proximity and (3) anatomical proximity. We analyzed B-cells, kidney-, mesenchymal- and hematopoietic-stem cells, as well as satellite cells, which are adult skeletal muscle stem cells isolated from their niche on the muscle fibers (myofibers) from various skeletal muscles. Our results demonstrate that all analyzed cell types are intermingled in the lineage tree, indicating that none of these cell types are single exclusive clones. We also show a significant correlation between the physical proximity of satellite cells within muscles and their lineage. Furthermore, we show that satellite cells obtained from a single myofiber are significantly clustered in the lineage tree, reflecting their common developmental origin. Lineage analysis based on somatic mutations enables performing high resolution reconstruction of lineage trees in mice and humans, which can provide fundamental insights to many aspects of their development and tissue maintenance.  相似文献   
68.
The depth of a cell of a multicellular organism is the number of cell divisions it underwent since the zygote, and knowing this basic cell property would help address fundamental problems in several areas of biology. At present, the depths of the vast majority of human and mouse cell types are unknown. Here, we show a method for estimating the depth of a cell by analyzing somatic mutations in its microsatellites, and provide to our knowledge for the first time reliable depth estimates for several cells types in mice. According to our estimates, the average depth of oocytes is 29, consistent with previous estimates. The average depth of B cells ranges from 34 to 79, linearly related to the mouse age, suggesting a rate of one cell division per day. In contrast, various types of adult stem cells underwent on average fewer cell divisions, supporting the notion that adult stem cells are relatively quiescent. Our method for depth estimation opens a window for revealing tissue turnover rates in animals, including humans, which has important implications for our knowledge of the body under physiological and pathological conditions.  相似文献   
69.
Ralstonia solanacearum causes a deadly wilting disease on a wide range of crops. To elucidate pathogenesis of this bacterium in different host plants, we set out to identify R. solanacearum genes involved in pathogenesis by screening random transposon insertion mutants of a highly virulent strain, Pss190, on tomato and Arabidopsis thaliana. Mutants exhibiting various decreased virulence levels on these two hosts were identified. Sequence analysis showed that most, but not all, of the identified pathogenesis genes are conserved among distinct R. solanacearum strains. A few of the disrupted loci were not reported previously as being involved in R. solanacearum pathogenesis. Notably, a group of mutants exhibited differential pathogenesis on tomato and Arabidopsis. These results were confirmed by characterizing allelic mutants in one other R. solanacearum strain of the same phylotype. The significantly decreased mutants' colonization in Arabidopsis was found to be correlated with differential pathogenesis on these two plants. Differential requirement of virulence genes suggests adaptation of this bacterium in different host environments. Together, this study reveals commonalities and differences of R. solanacearum pathogenesis on single solanaceous and nonsolanaceous hosts, and provides important new insights into interactions between R. solanacearum and different host plants.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号