首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  2013年   3篇
  2012年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有34条查询结果,搜索用时 156 毫秒
11.
3′-Fluoro-3′-deoxy-uridine, -cytidine, -adenosine and -guanosine have been synthesized by glycosylation of the corresponding silylated bases with 1-O-acetyl-2,5-di-O-benzoyl-3-fluoro-3-deoxy-D-ribofuranose in the presence of Friedel-Crafts catalysts and were converted to the 5′- triphosphates, NTP(3′-F). It was shown that NTP(3′-F) are terminators of RNA synthesis catalyzed by DNA-dependent RNA polymerase from E. coli and may thus serve as tools for DNA sequencing.  相似文献   
12.
B:LS ribozyme, a trans-variant of naturally occurring HDV ribozyme, has been constructed. The ribozyme consists of a substrate-containing LS chain and a catalytic B chain and differs from previously constructed trans-ribozymes in the length and nucleotide sequence of its oligonucleotide chains (33 and 34 bp, respectively). The chains readily associate with each other at room temperature, at which the LS cleavage reaction is negligible, which makes it possible to investigate association of the intact chains. At the same time, the self-cleavage rate constant for the trans-ribozyme B:LS at 50°C is close to those for the previously studied permuted cis-ribozymes, especially the LSB variant. In addition, the dependence of trans-ribozyme on reaction conditions (Mg2+ concentration, pH, and temperature) resembled that of cis-ribozyme. Similar to other trans-ribozymes, B:LS ribozyme demonstrated the ability for multiple turnover of the B strand with an excess of the substrate LS chain. The kinetic model of the self-cleavage reaction for B:LS is presented at http://www.cardio.ru/labgen/RZ_r.html. Taken together, our results show that the novel trans-variant of HDV ribozyme can be used as a model for analyzing the process of HDV ribozyme self-cleavage.  相似文献   
13.
New gamma-substituted analogues of dNTP were synthesized and their enzymatic stability and antiviral properties were evaluated.  相似文献   
14.
Development of methods based on determining expression of individual genes resulted in the need for large amounts of high quality RNA preparations. It is widely accepted that in intact rRNA the 28S and 18S band ratio must be 2:1. It is not quite clear what is the main cause of lower rRNA bands intensity ratio. It is difficult to isolate RNA with 2:1 28S/18S ratio from RNase-rich and some tumor tissues. At the same time this requirement may be excessive and RNA preparations with lower 28S/18S rRNA ratio may be quite adequate for most techniques of determining gene expression. As demonstrated in this study, the level of a particular RNA may be reliably determined by RT-PCR even in a total RNA that is usually considered as degraded (28S to 18S ratio as low as 0.4), provided that random primer is used in RT. In contrast, the use of the oligo(dT) primer in RT-PCR may lead to underestimation of specific mRNA level in the degraded RNA samples, depending on the distance of amplified fragment from the poly(A) end. A criterion based on average degradation level of a number of reference genes is suggested to discriminate specific RNA degradation from random and unspecific ones.  相似文献   
15.
A series of permuted variants of antigenomic HDV ribozyme and trans-acting variants were constructed. The catalytic activity study of the ribozymes has shown that all the variants were capable of self-cleaving with equally biphasic kinetics. Ribonuclease and Fe(II)-EDTA cleavage have provided evidence that all designed ribozymes fold according to the pseudoknot model and the conformations of the initial and cleaved ribozyme are different. A scheme of HDV ribozyme self-cleavage reaction was suggested. The role of hydrogen bonds in the reaction was evaluated by substitution of ribose in the ribozyme for deoxyribose. It was found that the 2'-OH group of U23 and C27 is critical for the reaction to occur; the 2'-OH group of U32 and U39 is important, while 2'-OH groups of other nucleotides of loop 3, stem 4 and stem 1 are unimportant for the cleavage activity.  相似文献   
16.
A three-strand ribozyme, a derivative of antigenomic hepatitis delta virus (HDV) ribozyme, which consists of subfragments of 16 (L), 17 (S), and 33 nucleotides (B), has been constructed. The ternary B-L-S complex formed by the subfragments in stoichiometric ratio was able to catalyze a self-cleavage reaction. Kinetics of this reaction exhibited biphasic behavior and the same parameters as in the case of natural cis-ribozyme. Study of kinetics of reaction initiated by adding various reaction components and the study of binary complex formation between subfragments B and L, B and S, and also ternary B-L-S complex formation revealed that: 1) in the presence of Mg2+, B and S form a stoichiometric complex, L and S do not form complex at all, while B and L form 2 types of complexes, probably B-L and 2B-L; and addition of S subfragment prevented the formation of the latter complex; 2) the reaction initiated by S subfragment proceeds much slower than that initiated by other components pointing to the possibility that in the absence of S L may form a nonproductive complex with B, which is slowly displaced by S followed by productive ternary complex formation. Dissociation constants for binary B-L, B-S and ternary B-L-S complexes have been estimated.  相似文献   
17.
The dimethylsulphate method has been used to study the complexes of RNA polymerase (Escherichia coli) with DNA of T7 phage, poly[d(A--T)] and fragments of calf thymus DNA protected against DNase digestion by RNA polymerase. The binding of RNA polymerase to DNA significantly increases the formation of 1-methyl-adenine produced by methylation of the single-stranded DNA region, diminishes by about 10% the formation of 3-methyl-adenine by methylation within the minor groove and does not affect the formation of 7-methyl-guanine by methylation within the major DNA groove. The presence of nascent RNA decreases the formation of 1-methyl-adenine in DNA of the complex by about 30%. The initiation of RNA synthesis or RNA synthesis itself does not influence the methylation of the major groove but shielding of the minor groove increases by about twice as much. These results suggest that RNA polymerase, upon binding, breaks Watson-Crick base-pairing in a DNA region of about 15-base-pairs long, that nascent RNA forms a duplex with DNA of about 10-base-pairs long; and that the enzyme weakly interacts with DNA along its grooves and preferentially makes contacts with the minor groove.  相似文献   
18.
Urokinase-type plasminogen activator (uPA) is a serine protease that converts the plasminogen zymogen into the enzymatically active plasmin. uPA is synthesized and secreted as the single-chain molecule (scuPA) composed of an N-terminal domain (GFD) and kringle (KD) and C-terminal proteolytic (PD) domains. Earlier, the structure of ATF (which consists of GFD and KD) was solved by NMR (A. P. Hansen et al. (1994) Biochemistry, 33, 4847–4864) and by X-ray crystallography alone and in a complex with the soluble form of the urokinase receptor (uPAR, CD87) lacking GPI (C. Barinka et al. (2006) J. Mol. Biol., 363, 482–495). According to these data, GFD contains two β-sheet regions oriented perpendicularly to each other. The area in the GFD responsible for binding to uPAR is localized in the flexible Ω-loop, which consists of seven amino acid residues connecting two strings of antiparallel β-sheet. It was shown by site-directed mutagenesis that shortening of the Ω-loop length by one amino acid residue leads to the inability of GFD to bind to uPAR (V. Magdolen et al. (1996) Eur. J. Biochem., 237, 743–751). Here we show that, in contrast to the above-mentioned studies, we found no sign of the β-sheet regions in GFD in our uPA preparations either free or in a complex with uPAR. The GFD seems to be a rather flexible and unstructured domain, demonstrating in spite of its apparent flexibility highly specific interaction with uPAR both in vitro and in cell culture experiments. Circular dichroism, tryptophan fluorescence during thermal denaturation of the protein, and heteronuclear NMR spectroscopy of 15N/13C-labeled ATF both free and in complex with urokinase receptor were used to judge the secondary structure of GFD of uPA.  相似文献   
19.
The kinetic characteristics have been studied for noncircularly permuted variants of the human hepatitis delta virus antigenomic ribozyme to find out the cause of the two-phase kinetics of the self-cleavage reaction. Different ways of reaction initiation, suboptimal conditions, and jumpwise changes of reaction conditions have been used, and the temperature dependences have been studied. A correlation has been shown between the apparent kinetic constant of the first reaction phase and the portion of the ribozyme molecules that self-cleaved during the first phase. Partial restoration of the initial reaction characteristics has been shown by the reinitiation of reaction being stopped after completing the first phase. On the basis of all the data obtained, a scheme of the self-cleavage reaction has been proposed including: (i) activation of the ribozyme with energy of 40–50 kcal/mol and a characteristic time of several deciminutes under optimal reaction conditions; (ii) fast and reversible reaction of the phosphodiester bond cleavage; (iii) reaction leading to isomerization of the 3",5"-phosphodiester bond to the 2",5" bond in the self-cleavage site with a characteristic activation time of tens of minutes; and (iv) practically irreversible conformational change leading to fixation of the cleavage by immobilization of the 5"-terminal nucleotide of the product in the center of the formed structure and displacement of the 3"-terminal nucleotide to the periphery. The latter process has a characteristic time of tens of minutes and a low activation energy.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号