首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   25篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2016年   10篇
  2015年   21篇
  2014年   19篇
  2013年   27篇
  2012年   31篇
  2011年   20篇
  2010年   12篇
  2009年   15篇
  2008年   20篇
  2007年   18篇
  2006年   9篇
  2005年   8篇
  2004年   8篇
  2003年   9篇
  2002年   8篇
  2001年   9篇
  2000年   4篇
  1999年   9篇
  1998年   3篇
  1996年   2篇
  1995年   8篇
  1994年   2篇
  1992年   4篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
  1967年   1篇
  1966年   3篇
  1965年   1篇
  1964年   5篇
  1938年   1篇
排序方式: 共有373条查询结果,搜索用时 171 毫秒
101.
Paralemmin is a novel lipid-anchored protein, which is highly expressed in neuronal plasma membranes. In this study, we demonstrate that paralemmin specifically interacts with the third intracellular loop of the D3 dopamine receptor. Utilizing co-immunoprecipitation and glutathione-S-transferase (GST) pulldown strategies, we demonstrate that paralemmin interacts exclusively with D3, but not D2 or D4 dopamine receptors or beta-adrenergic receptors. Immunocytochemistry demonstrated co-localization of paralemmin and D3 receptor in vivo in hippocampus and cerebellum and in vitro in glial and neuronal cultures. Deletion mutational analysis indicates that amino acids 154-230 of paralemmin strongly interacted with amino acids 211-227 and 281-330 of the third intracellular loop of D3 receptor. The consequences of these interactions were investigated by co-expression in HEK293 cells. Cell surface biotinylation experiments demonstrate that paralemmin decreased D3 receptor concentration at the plasma membrane. Consistent with this observation, paralemmin expression decreased dopamine-stimulated adenylate cyclase activity. However, paralemmin also decreased basal, isoproterenol and forskolin-stimulated adenylate cyclase activity, suggesting a more general cellular function for paralemmin. Taken together, paralemmin has been implicated as a potent modulator of cellular cAMP signaling within the brain.  相似文献   
102.
Abscisic acid (ABA) is a phytohormone regulating important functions in higher plants, notably responses to abiotic stress. Recently, chemical or physical stimulation of human granulocytes was shown to induce production and release of endogenous ABA, which activates specific cell functions. Here we provide evidence that ABA stimulates several functional activities of the murine microglial cell line N9 (NO and tumor necrosis factor-α production, cell migration) through the second messenger cyclic ADP-ribose and an increase of intracellular calcium. ABA production and release occur in N9 cells stimulated with bacterial lipopolysaccharide, phorbol myristate acetate, the chemoattractant peptide f-MLP, or β-amyloid, the primary plaque component in Alzheimer disease. Finally, ABA priming stimulates N9 cell migration toward β-amyloid. These results indicate that ABA is a pro-inflammatory hormone inducing autocrine microglial activation, potentially representing a new target for anti-inflammatory therapies aimed at limiting microglia-induced tissue damage in the central nervous system.Microglial cells are the monocyte/macrophage equivalent of the central nervous system and represent the first line of defense in the brain, by removing infectious agents and damaged cells (1). Microglia can also release a variety of trophic factors and cytokines able to regulate the communication between neuronal and other glial cells and can contribute to tissue repair and neuroprotection (24). Pathologic microglial activation, however, confers neurotoxic properties to these cells, thereby causing neuronal degeneration (5). Excessive activation of microglia, under conditions of chronic inflammation, can contribute to the pathogenesis of neurodegenerative diseases, such as multiple sclerosis and Alzheimer and Parkinson diseases, by producing and releasing a number of potentially cytotoxic substances, including pro-inflammatory cytokines and NO (4, 68). Therefore, identification of the molecular mechanisms underlying microglial activation might lead to the development of new anti-inflammatory drugs for the treatment of these diseases.Abscisic acid (ABA)2 is a plant hormone regulating important biological functions in higher plants, including response to abiotic stress, control of stomatal closure, regulation of seed dormancy, and germination (9). Recently, ABA was shown to behave as an endogenous pro-inflammatory hormone in human granulocytes (10), stimulating several functional activities of these cells (migration, phagocytosis, reactive oxygen species, and NO production) through a signaling cascade that involves a protein kinase A-mediated ADP-ribosyl cyclase phosphorylation and consequent overproduction of the universal Ca2+ mobilizer cyclic ADP-ribose (cADPR) (11). This mechanism leads to an increase of the intracellular Ca2+ concentration, which is ultimately responsible for granulocyte activation (10).The facts that microglial cells play a defensive role in the central nervous system similar to that of granulocytes in other tissues and that cADPR has been described as the second messenger involved in the activation of microglia induced by lipopolysaccharide (LPS) (12) prompted us to investigate the effect of ABA in these cells.Indeed, exogenous ABA, at concentrations ranging from 250 nm to 20 μm, elicits functional activation of murine N9 cells, stimulating TNF-α release and cell migration through activation of the ADP-ribosyl cyclase CD38 and overproduction of cADPR. Moreover, N9 cells produce and release ABA when stimulated with LPS, amyloid β-peptide (βA), phorbol myristate acetate (PMA), or the chemoattractant peptide f-MLP. These results indicate that ABA behaves as an endogenous, pro-inflammatory hormone in murine microglia and provide a new target for future investigations into the role of this hormone in inflammatory and degenerative diseases of the central nervous system accompanied by microglial activation.  相似文献   
103.
The last decades evidenced auditory laterality in vertebrates, offering new important insights for the understanding of the origin of human language. Factors such as the social (e.g. specificity, familiarity) and emotional value of sounds have been proved to influence hemispheric specialization. However, little is known about the crossed effect of these two factors in animals. In addition, human-animal comparative studies, using the same methodology, are rare. In our study, we adapted the head turn paradigm, a widely used non invasive method, on 8–9-year-old schoolgirls and on adult female Campbell''s monkeys, by focusing on head and/or eye orientations in response to sound playbacks. We broadcast communicative signals (monkeys: calls, humans: speech) emitted by familiar individuals presenting distinct degrees of social value (female monkeys: conspecific group members vs heterospecific neighbours, human girls: from the same vs different classroom) and emotional value (monkeys: contact vs threat calls; humans: friendly vs aggressive intonation). We evidenced a crossed-categorical effect of social and emotional values in both species since only “negative” voices from same class/group members elicited a significant auditory laterality (Wilcoxon tests: monkeys, T = 0 p = 0.03; girls: T = 4.5 p = 0.03). Moreover, we found differences between species as a left and right hemisphere preference was found respectively in humans and monkeys. Furthermore while monkeys almost exclusively responded by turning their head, girls sometimes also just moved their eyes. This study supports theories defending differential roles played by the two hemispheres in primates'' auditory laterality and evidenced that more systematic species comparisons are needed before raising evolutionary scenario. Moreover, the choice of sound stimuli and behavioural measures in such studies should be the focus of careful attention.  相似文献   
104.
A variety of recombinant protein expression systems have been developed for heterologous genes in both prokaryotic and eukaryotic systems such as bacteria, yeast, mammals, insects, transgenic animals, and plants. Recently Leishmania tarentolae, a trypanosomatid protozoan parasite of the white-spotted wall gecko (Tarentola annularis), has been suggested as candidate for heterologous genes expression. Trypanosomatidae are rich in glycoproteins, which can account for more than 10% of total protein; the oligosaccharide structures are similar to those of mammals with N-linked galactose, and fucose residues. To date several heterologous proteins have been expressed in L. tarentolae including both cytoplasmic enzymes and membrane receptors. Significant advances in the development of new strains and vectors, improved techniques, and the commercial availability of those tools coupled with a better understanding of the biology of Leishmania species will lead to value and power in commercial and research labs alike.  相似文献   
105.
Phosphatidylinositol 3-kinases (PI3Ks) are a group of lipid kinases that regulate signaling pathways involved in cell proliferation, adhesion, survival and motility. The PI3K pathway is considered to play an important role in tumorigenesis. Activating mutations of the p110α subunit of PI3K (PIK3CA) have been identified in a broad spectrum of tumors. Analyses of PIK3CA mutations reveals that they increase the PI3K signal, stimulate downstream Akt signaling, promote growth factor-independent growth and increase cell invasion and metastasis. In this review, we analyze the contribution of the PIK3CA mutations in cancer, and their possible implications for diagnosis and therapy.  相似文献   
106.
Novel heterodimer analogues of melatonin were synthesized, when agomelatine (1) and various aryl units are linked via a linear alkyl chain through the methoxy group. The compounds were tested for their actions at melatonin receptors. Several of these ligands are MT1-selective with nanomolar or subnanomolar affinity. In addition, while most of the derivatives behave as partial agonists on one or both receptor subtypes, N-[2-(7-{4-[6-(1-methoxycarbonylethyl)naphthalen-2-yloxy]butoxy}naphthalen-1-yl)ethyl]acetamide (36), a subnanomolar MT1 ligand with an 11-fold preference over MT2 receptors, is a full antagonist on both receptors. Our results also confirm that the selectivity seen for the MT1 receptor arises predominantly from steric factors and is not a consequence of the bridging of melatonin receptor dimers.  相似文献   
107.
Cheese whey and cottage cheese whey are by-products of the milk and cheese industry, resulting from the production of cheese and cottage cheese (ricotta) from milk. They are still rich in organic substances and cannot be discarded into the environment without proper treatment. Whey and cottage cheese whey were used as culture media for some strains of the yeast Kluyveromyces lactis, transformed with the human lysozyme gene. It was found that the yeast strains grew well in both media and produced a considerable amount of recombinant protein. Production kinetics showed that the human lysozyme was produced in a greater amount within 36 h of fermentation (125 micrograms ml-1 vs 25 micrograms ml-1 in the control) than in the synthetic commercial media used for strain preparation and characterization. The recombinant protein produced was actually shown to be the human lysozyme, using renaturing SDS-PAGE and Western blot techniques. While producing recombinant protein, the Kluyveromyces strain cleared the cottage cheese whey of most organic substances and produced a considerable amount (almost 3%) of lysozyme-enriched useful biomass.  相似文献   
108.
Until recently, little was known about the possible physiological functions of the M(5) muscarinic acetylcholine receptor subtype, the last member of the muscarinic receptor family (M(1)-M(5)) to be cloned. To learn more about the potential physiological roles of this receptor subtype, we generated and analyzed M(5) receptor-deficient mice (M5 -/- mice). Strikingly, acetylcholine, a potent dilator of most vascular beds, virtually lost the ability to dilate cerebral arteries and arterioles in M5 -/- mice, suggesting that endothelial M(5) receptors mediate this activity in wild-type mice. This effect was specific for cerebral blood vessels, since acetylcholine-mediated dilation of extra-cerebral arteries remained fully intact in M5 -/- mice. In addition, in vitro neurotransmitter release experiments indicated that M(5) receptors located on dopaminergic nerve terminals play a role in facilitating muscarinic agonist-induced dopamine release in the striatum, consistent with the observation that the dopaminergic neurons innervating the striatum almost exclusively express the M(5) receptor subtype. We also found that the rewarding effects of morphine, the prototypical opiate analgesic, were substantially reduced in M5 -/- mice, as measured in the conditioned place preference paradigm. Furthermore, both the somatic and affective components of naloxone-induced morphine withdrawal symptoms were significantly attenuated in M5 -/- mice. It is likely that these behavioral deficits are caused by the lack of mesolimbic M(5) receptors, activation of which is known to stimulate dopamine release in the nucleus accumbens. These results convincingly demonstrate that the M(5) muscarinic receptor is involved in modulating several important pharmacological and behavioral functions. These findings may lead to novel therapeutic strategies for the treatment of drug addiction and certain cerebrovascular disorders.  相似文献   
109.
Parkinson's disease (PD) is an extra-pyramidal neurodegenerative disorder, in which alterations of the immune system are involved. Interleukin (IL)-15 stimulates cellular immune response and induces growth and differentiation of various immune cells. RANTES, promoting leukocyte infiltration to sites of inflammation, mediates the trafficking and homing of immune cells. To clarify the potential effect of levodopa on the immunological network of PD, we analyzed IL-15 and RANTES serum levels in PD patients, treated or not with levodopa, and in healthy donors. Levodopa-treated patients showed significantly higher IL-15 and RANTES circulating levels with respect to healthy controls and higher, although not significantly, levels with respect to untreated patients. So, we hypothesize that the immunological alterations found in PD may be linked, at least in part, to levodopa therapy.  相似文献   
110.
Experimental evidence indicates that ammonia causes neuroexcitation and seizures. This contrasts with the lethargy, confusion and other manifestations of global CNS depression commonly considered to be major components of hyperammonemic encephalopathies. Substantial data now indicates that ammonia can modulate GABAergic neurotransmission through direct and indirect mechanisms. This modulation consists of an enhancement of GABAergic neurotransmission at concentrations commonly encountered in hyperammonemic states and precedes the suppression of inhibitory neuronal function observed at higher (>1mM) ammonia concentrations. Not only is this increase in GABAergic neurotransmission consistent with the clinical picture of lethargy, ataxia and cognitive deficits associated with liver failure and congenital hyperammonemia, but it also provides a mechanism for testing new therapeutic modalities for the treatment of hyperammonemic encephalopathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号