首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2772篇
  免费   253篇
  国内免费   1篇
  3026篇
  2024年   5篇
  2023年   18篇
  2022年   20篇
  2021年   63篇
  2020年   47篇
  2019年   41篇
  2018年   60篇
  2017年   60篇
  2016年   96篇
  2015年   158篇
  2014年   152篇
  2013年   189篇
  2012年   271篇
  2011年   262篇
  2010年   151篇
  2009年   143篇
  2008年   184篇
  2007年   155篇
  2006年   171篇
  2005年   171篇
  2004年   132篇
  2003年   112篇
  2002年   112篇
  2001年   24篇
  2000年   12篇
  1999年   32篇
  1998年   17篇
  1997年   10篇
  1996年   14篇
  1995年   14篇
  1994年   13篇
  1993年   6篇
  1992年   14篇
  1991年   7篇
  1990年   8篇
  1989年   4篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1981年   3篇
  1977年   3篇
  1973年   3篇
  1971年   3篇
  1969年   3篇
  1967年   4篇
  1964年   3篇
  1878年   2篇
排序方式: 共有3026条查询结果,搜索用时 15 毫秒
91.
92.
93.
White tip, caused by Phytophthora porri, is a devastating disease in the autumn and winter production of leek (Allium porrum) in Europe. This study investigated the disease cycle of P. porri in laboratory and field conditions. Oospores readily germinated in the presence of non‐sterile soil extract at any temperature between 4 and 22°C, with the formation of sporangia which released zoospores. The zoospores survived at least 7 weeks in water at a temperature range of 0 till 24°C. Microscopic examinations revealed that zoospores encysted and germinated on the leek leaf surface and hyphae entered the leaf directly through stomata or by penetrating via appressoria. Oospores were formed in the leaves within 6 days, while sporangia were not produced. By monitoring disease progress in fields with a different cropping history of leek, it could be deduced that P. porri survives in soil for up to 4 years. Disease progress during three consecutive years was correlated with average daily rainfall in the infection period. Disease incidence on leek was reduced when rain splash was excluded by growing the plants in an open hoop greenhouse. Based on these findings, we propose a disease cycle for P. porri in which oospores germinate in puddles, and zoospores reach the leaves by rain splash and survive in water in the leaf axils, from where they infect the plant by direct penetration or via stomata. When conditions become unfavourable, oospores are produced in the leaves which again reach the soil when leaves decay. Secondary spread of the disease by sporangia does not seem to be important.  相似文献   
94.
95.
Abstract. We studied the effects of dibutyryl cyclic AMP (dbcAMP) on mouse limb-bud chondrogenesis at three stages of embryonic development. After 24 h of culture, limb buds with or without a covering of ectoderm were treated with 1 mM dbcAMP for 48 h and were then compared with untreated cultured limb buds. Treatment with dbcAMP enhanced cartilaginous differentiation in organ cultures of stage-17 and -19 (according to Theiler's) limb buds, although the presence of ectoderm reduced the level of dbcAMP stimulation. By stage 20, treatment with dbcAMP irreversibly inhibited cartilaginous differentiation. These results suggest that the responsiveness of mesenchymal limb-bud cells to dbcAMP is stage related. The results of histological studies as well as of analyses of DNA content and sulphated glycosaminoglycan accumulation supported the hypothesis that dbcAMP treatment induces recruitment of initially non-chondrogenic cells whose commitment explains the enhancement of cartilaginous differentiation. Limb-bud competence for chondrogenesis throughout the three developmental stages studied is also discussed.  相似文献   
96.
Dendritic cells (DCs) are pivotal regulators of immune reactivity and immune tolerance. The observation that DCs can recruit naive T cells has invigorated cancer immunology and led to the proposal of DCs as the basis for vaccines designed for the treatment of cancer. Designing effective strategies to load DCs with antigens is a challenging field of research. The successful realization of gene transfer to DCs will be highly dependent on the employed vector system. Here, we review various viral and non-viral gene transfer systems, and discuss their distinct characteristics and possible advantages and disadvantages in respect to their use in DC-based immunotherapy.  相似文献   
97.
VEGF-A is a major angiogenesis and permeability factor. Its cellular effects, which can be used as targets in anti-angiogenesis therapy, have mainly been studied in vitro using endothelial cell cultures. The purpose of the present study was to further characterize these effects in vivo in vascular endothelial cells and pericytes, in an experimental monkey model of VEGF-A-induced iris neovascularization. Two cynomolgus monkeys (Macaca fascicularis) received four injections of 0.5 microg VEGF-A in the vitreous of one eye and PBS in the other eye. After sacrifice at day 9, eyes were enucleated and iris samples were snap-frozen for immunohistochemistry (IHC) and stained with a panel of antibodies recognizing endothelial and pericyte determinants related to angiogenesis and permeability. After VEGF-A treatment, the pre-existing iris vasculature showed increased permeability, hypertrophy, and activation, as demonstrated by increased staining of CD31, PAL-E, tPA, uPA, uPAR, Glut-1, and alphavbeta3 and alphavbeta5 integrins, VEGF receptors VEGFR-1, -2 and -3, and Tie-2 in endothelial cells, and of NG2 proteoglycan, uPA, uPAR, integrins and VEGFR-1 in pericytes. Vascular sprouts at the anterior surface of the iris were positive for the same antigens except for tPA, Glut-1, and Tie-2, which were notably absent. Moreover, in these sprouts VEGFR-2 and VEGFR-3 expression was very high in endothelial cells, whereas many pericytes were present that were positive for PDGFR-beta, VEGFR-1, and NG2 proteoglycan and negative for alpha-SMA. In conclusion, proteins that play a role in angiogenesis are upregulated in both pre-existing and newly formed iris vasculature after treatment with VEGF-A. VEGF-A induces hypertrophy and loss of barrier function in pre-existing vessels, and induces angiogenic sprouting, characterized by marked expression of VEGFR-3 and lack of expression of tPA and Tie-2 in endothelial cells, and lack of alpha-SMA in pericytes. Our in vivo study indicates a role for alpha-SMA-negative pericytes in early stages of angiogenesis. Therefore, our findings shed new light on the temporal and spatial role of several proteins in the angiogenic cascade in vivo.  相似文献   
98.
Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and α-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of α-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and α-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from α-keto acids only. BL2 also converted α-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and α-keto acids and that carbon metabolism is important in regulating this event.  相似文献   
99.
In plant species that rely on mycorrhizal symbioses for germination and seedling establishment, seedling recruitment and temporal changes in abundance can be expected to depend on fungal community composition and local environmental conditions. However, disentangling the precise factors that determine recruitment success in species that critically rely on mycorrhizal fungi represents a major challenge. In this study, we used seed germination experiments, 454 amplicon pyrosequencing and assessment of soil conditions to investigate the factors driving changes in local abundance in 28 populations of the orchid Neottia ovata. Comparison of population sizes measured in 2003 and 2013 showed that nearly 60% of the studied populations had declined in size (average growth rate across all populations: ?0.01). Investigation of the mycorrhizal fungi in both the roots and soil revealed a total of 68 species of putatively mycorrhizal fungi, 21 of which occurred exclusively in roots, 25 that occurred solely in soil and 22 that were observed in both the soil and roots. Seed germination was limited and significantly and positively related to soil moisture content and soil pH, but not to fungal community composition. Large populations or populations with high population growth rates showed significantly higher germination than small populations or populations declining in size, but no significant relationships were found between population size or growth and mycorrhizal diversity. Overall, these results indicate that temporal changes in abundance were related to the ability of seeds to germinate, but at the same time they provided limited evidence that variation in fungal communities played an important role in determining population dynamics.  相似文献   
100.
Fast-growing, aerobic, heterotrophic bacteria from the root surface of young sugar beet plants were inventoried. Isolation of the most abundant bacteria from the root surface of each of 1,100 plants between the second and tenth leaf stage yielded 5,600 isolates. These plants originated from different fields in Belgium and Spain. All isolates were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cellular proteins. Comparison of protein fingerprints allowed us to inventory the bacteria of individual plants of different fields or leaf stages and to analyze the composition and variability of the rhizobacterial population of young sugar beet plants. Each field harbored a specific population of bacteria which showed a highly hierarchic structure. A small number of bacteria occurring frequently at high densities dominated in each field. The major bacteria were identified as Pseudomonas fluorescens, Xanthomonas maltophilia, Pseudomonas paucimobilis, and Phyllobacterium sp. The former three species showed a high genetic variability as they were represented by different protein fingerprint types on the same or different fields or leaf stages. Twinspan analysis and relative abundance plots showed that the structure and composition of the bacterial populations varied strongly over time. Pseudomonads were typically early colonizers which were later replaced by X. maltophilia or Phyllobacterium sp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号