首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2430篇
  免费   224篇
  国内免费   201篇
  2024年   5篇
  2023年   20篇
  2022年   33篇
  2021年   114篇
  2020年   87篇
  2019年   108篇
  2018年   100篇
  2017年   80篇
  2016年   116篇
  2015年   137篇
  2014年   178篇
  2013年   185篇
  2012年   206篇
  2011年   163篇
  2010年   116篇
  2009年   121篇
  2008年   124篇
  2007年   123篇
  2006年   95篇
  2005年   77篇
  2004年   87篇
  2003年   90篇
  2002年   81篇
  2001年   63篇
  2000年   36篇
  1999年   34篇
  1998年   26篇
  1997年   20篇
  1996年   20篇
  1995年   15篇
  1994年   32篇
  1993年   14篇
  1992年   33篇
  1991年   21篇
  1990年   12篇
  1989年   17篇
  1988年   9篇
  1987年   10篇
  1986年   6篇
  1985年   8篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   6篇
  1979年   4篇
  1978年   2篇
  1975年   3篇
  1969年   1篇
  1967年   1篇
排序方式: 共有2855条查询结果,搜索用时 46 毫秒
41.
42.
Imitation Switch (ISWI) chromatin remodelers are known to function in diverse multi‐subunit complexes in yeast and animals. However, the constitution and function of ISWI complexes in Arabidopsis thaliana remain unclear. In this study, we identified forkhead‐associated domain 2 (FHA2) as a plant‐specific subunit of an ISWI chromatin‐remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. The stamen filament is shorter in the fha2 and rlt1/2 mutants than in the wild type, whereas their pistil lengths are comparable. The shorter filament, which is due to reduced cell size, results in insufficient pollination and reduced fertility. The rlt1/2 mutant shows an early‐flowering phenotype, whereas the phenotype is not shared by the fha2 mutant. Consistent with the functional specificity of FHA2, our RNA‐seq analysis indicated that the fha2 mutant affects a subset of RLT1/2‐regulated genes that does not include genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex and is exclusively involved in regulating stamen development and plant fertility.  相似文献   
43.
Rice is a major source of cadmium(Cd) intake for Asian people. Indica rice usually accumulates more Cd in shoots and grains than Japonica rice. However, underlying genetic bases for differential Cd accumulation between Indica and Japonica rice are still unknown. In this study, we cloned a quantitative trait locus(QTL) grain Cd concentration on chromosome 7(GCC7) responsible for differential grain Cd accumulation between two rice varieties by performing QTL analysis and map-based cloning. We found that the two GCC7 alleles, GCC7~(PA64s) and GCC7~(93-11), had different promoter activity of OsHMA3,leading to different OsHMA3 expression and different shoot and grain Cd concentrations. By analyzing the distribution of different haplotypes of GCC7 among diverse rice accessions, we discovered that the high and low Cd accumulation alleles, namely GCC7~(93-11) and GCC7~(PA64s), were preferentially distributed in Indica and Japonica rice,respectively. We further showed that the GCC7~(PA64s)allele can be used to replace the GCC7~(93-11) allele in the super cultivar 93-11 to reduce grain Cd concentration without adverse effect on agronomic traits. Our results thus reveal that the QTL GCC7 with sequence variation in the OsHMA3 promoter is an important determinant controlling differential grain Cd accumulation between Indica and Japonica rice.  相似文献   
44.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   
45.
Leptin is well acknowledged as an anorexigenic hormone that plays an important role in feeding control. Hypothalamic GABA system plays a significant role in leptin regulation on feeding and metabolism control. However, the pharmacological relationship of leptin and GABA receptor is still obscure. Therefore, we investigated the effect of leptin or combined with baclofen on the food intake in fasted mice. We detected the changes in hypothalamic c‐Fos expression, hypothalamic TH, POMC and GAD67 expression, plasma insulin, POMC and GABA levels to demonstrate the mechanisms. We found that leptin inhibit fasting‐induced increased food intake and activated hypothalamic neurons. The inhibitory effect on food intake induced by leptin in fasted mice can be reversed by pretreatment with baclofen. Baclofen reversed leptin's inhibition on c‐Fos expression of PAMM in fasted mice. Therefore, these results indicate that leptin might inhibit fasting‐triggered activation of PVN neurons via presynaptic GABA synaptic functions which might be partially blocked by pharmacological activating GABA‐B. Our findings identify the role of leptin in the regulation of food intake.  相似文献   
46.
Human umbilical cord mesenchymal stem cell‐derived exosomes (hucMSC‐exosomes) have been implicated as a novel therapeutic approach for tissue injury repair and regeneration, but the effects of hucMSC‐exosomes on coxsackievirus B3 (CVB3)‐induced myocarditis remain unknown. The object of the present study is to investigate whether hucMSC‐exosomes have therapeutic effects on CVB3‐induced myocarditis (VMC). HucMSC‐exosomes were identified using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and Western blot. The purified hucMSC‐exosomes tagged with PKH26 were tail intravenously injected into VMC model mice in vivo and used to administrate CVB3‐infected human cardiomyocytes (HCMs) in vitro, respectively. The effects of hucMSC‐exosomes on myocardial pathology injury, proinflammatory cytokines and cardiac function were evaluated through haematoxylin and eosin (H&E) staining, quantitative polymerase chain reaction (qPCR) and Doppler echocardiography. The anti‐apoptosis role and potential mechanism of hucMSC‐exosomes were explored using TUNEL staining, flow cytometry, immunohistochemistry, Ad‐mRFP‐GFP‐LC3 transduction and Western blot. In vivo results showed that hucMSC‐exosomes (50 μg iv) significantly alleviated myocardium injury, shrank the production of proinflammatory cytokines and improved cardiac function. Moreover, in vitro data showed that hucMSC‐exosomes (50 μg/mL) inhibited the apoptosis of CVB3‐infected HCM through increasing pAMPK/AMPK ratio and up‐regulating autophagy proteins LC3II/I, BECLIN‐1 and anti‐apoptosis protein BCL‐2 as well as decreasing pmTOR/mTOR ratio, promoting the degradation of autophagy flux protein P62 and down‐regulating apoptosis protein BAX. In conclusion, hucMSC‐exosomes could alleviate CVB3‐induced myocarditis via activating AMPK/mTOR‐mediated autophagy flux pathway to attenuate cardiomyocyte apoptosis, which will be benefit for MSC‐exosome therapy of myocarditis in the future.  相似文献   
47.
Carbonaceous materials have emerged as promising anode candidates for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost‐effectiveness and wide availability of materials. However, further development in this realm is handicapped by the deficiency in their in‐target and large‐scale synthesis, as well as their low specific capacity and huge volume expansion. Herein the precise and scalable synthesis of N/S dual‐doped graphitic hollow architectures (NSG) via direct plasma enhanced chemical vapor deposition is reported. Thus‐fabricated NSG affording uniform nitrogen/sulfur co‐doping, possesses ample potassiophilic surface moieties, effective electron/ion‐transport pathways, and high structural stability, which bestow it with high rate capability (≈100 mAh g?1 at 20 A g?1) and a prolonged cycle life (a capacity retention rate of 90.2% at 5 A g?1 after 5000 cycles), important steps toward high‐performance K‐ion storage. The enhanced kinetics of the NSG anode are systematically probed by theoretical simulations combined with operando Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and galvanostatic intermittent titration technique measurements. In further contexts, printed NSG electrodes with tunable mass loading (1.84, 3.64, and 5.65 mg cm?2) are realized to showcase high areal capacities. This study demonstrates the construction of a printable carbon‐based PIB anode, that holds great promise for next‐generation grid‐scale PIB applications.  相似文献   
48.
本研究检测了40例食管癌组织和40例癌旁组织中的miR-21、PTEN、PI3K和AKT表达,并通过转染miR-21抑制剂来敲低人食管癌细胞系EC9706的miR-21表达,考察了miR-21对食管癌细胞生长的影响。研究发现,食管癌组织中PTEN蛋白的阳性染色评分低于癌旁组织(p<0.05),而PI3K和AKT蛋白的阳性染色评分高于癌旁组织(p<0.05)。miR-21在人食管癌组织中被上调(3.56 vs 1.21,p<0.05)。转染miR-21抑制剂导致PTEN蛋白表达升高,而PI3K和AKT蛋白表达降低(p<0.05)。转染miR-21抑制剂抑制了EC9706细胞的增殖和迁移,但促进了细胞凋亡(p<0.05)。miR-21的上调可通过激活PTEN/PI3K/AKT信号通路来促进食道癌细胞的增殖和迁移,并抑制细胞凋亡。  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号