首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   50篇
  国内免费   1篇
  2023年   3篇
  2022年   8篇
  2021年   25篇
  2020年   8篇
  2019年   9篇
  2018年   14篇
  2017年   19篇
  2016年   35篇
  2015年   20篇
  2014年   41篇
  2013年   51篇
  2012年   57篇
  2011年   52篇
  2010年   55篇
  2009年   36篇
  2008年   44篇
  2007年   39篇
  2006年   37篇
  2005年   32篇
  2004年   19篇
  2003年   18篇
  2002年   11篇
  2001年   17篇
  2000年   17篇
  1999年   15篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1994年   7篇
  1993年   6篇
  1992年   10篇
  1991年   12篇
  1990年   11篇
  1989年   12篇
  1988年   7篇
  1987年   13篇
  1986年   11篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1981年   6篇
  1980年   8篇
  1979年   4篇
  1978年   6篇
  1977年   4篇
  1975年   4篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1967年   4篇
排序方式: 共有848条查询结果,搜索用时 15 毫秒
81.

Background  

The major intrinsic proteins (MIPs) facilitate the transport of water and neutral solutes across the lipid bilayers. Plant MIPs are believed to be important in cell division and expansion and in water transport properties in response to environmental conditions. More than 30 MIP sequences have been identified in Arabidopsis thaliana, maize and rice. Plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), Nod26-like intrinsic protein (NIPs) and small and basic intrinsic proteins (SIPs) are subfamilies of plant MIPs. Despite sequence diversity, all the experimentally determined structures belonging to the MIP superfamily have the same "hour-glass" fold.  相似文献   
82.
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought‐resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space‐for‐time substitution, common garden experiment with 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as ‘cool/moist’, ‘moderate’, or ‘warm/dry’) to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought‐resistance, (ii) the patterns of genetic variation are related to the native source‐climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought‐resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpirationmin), water deficit (% below turgid saturation), and specific leaf area (SLA, cmg?1) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought‐resistance (i.e., lower transpirationmin, water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought‐resistance across all test sites. Multiple regression analysis indicated that Douglas‐fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future.  相似文献   
83.
Methylated guanine damage at O6 position (i.e. O6MG) is dangerous due to its mutagenic and carcinogenic character that often gives rise to G:C-A:T mutation. However, the reason for this mutagenicity is not known precisely and has been a matter of controversy. Further, although it is known that O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6MG paired with cytosine in DNA, the complete mechanism of target recognition and repair is not known completely. All these aspects of DNA damage and repair have been addressed here by employing high level density functional theory in gas phase and aqueous medium. It is found that the actual cause of O6MG mediated mutation may arise due to the fact that DNA polymerases incorporate thymine opposite to O6MG, misreading the resulting O6MG:T complex as an A:T base pair due to their analogous binding energies and structural alignments. It is further revealed that AGT mediated nucleotide flipping occurs in two successive steps. The intercalation of the finger residue Arg128 into the DNA double helix and its interaction with the O6MG:C base pair followed by rotation of the O6MG nucleotide are found to be crucial for the damage recognition and nucleotide flipping.  相似文献   
84.
85.
Developing crops that are better adapted to abiotic stresses is important for food production in many parts of the world today. Anticipated changes in climate and its variability, particularly extreme temperatures and changes in rainfall, are expected to make crop improvement even more crucial for food production. Here, we review two key biotechnology approaches, molecular breeding and genetic engineering, and their integration with conventional breeding to develop crops that are more tolerant of abiotic stresses. In addition to a multidisciplinary approach, we also examine some constraints that need to be overcome to realize the full potential of agricultural biotechnology for sustainable crop production to meet the demands of a projected world population of nine billion in 2050.  相似文献   
86.
Contemporary sequencing studies often ignore the diploid nature of the human genome because they do not routinely separate or 'phase' maternally and paternally derived sequence information. However, many findings - both from recent studies and in the more established medical genetics literature - indicate that relationships between human DNA sequence and phenotype, including disease, can be more fully understood with phase information. Thus, the existing technological impediments to obtaining phase information must be overcome if human genomics is to reach its full potential.  相似文献   
87.
Bansal P  Wang S  Liu S  Xiang YY  Lu WY  Wang Q 《PloS one》2011,6(10):e26225
Pancreatic islet β-cells produce large amounts of γ-aminobutyric acid (GABA), which is co-released with insulin. GABA inhibits glucagon secretion by hyperpolarizing α-cells via type-A GABA receptors (GABA(A)Rs). We and others recently reported that islet β-cells also express GABA(A)Rs and that activation of GABA(A)Rs increases insulin release. Here we investigate the effects of insulin on the GABA-GABA(A)R system in the pancreatic INS-1 cells using perforated-patch recording. The results showed that GABA produces a rapid inward current and depolarizes INS-1 cells. However, pre-treatment of the cell with regular insulin (1 μM) suppressed the GABA-induced current (I(GABA)) by 43%. Zinc-free insulin also suppressed I(GABA) to the same extent of inhibition by regular insulin. The inhibition of I(GABA) occurs within 30 seconds after application of insulin. The insulin-induced inhibition of I(GABA) persisted in the presence of PI3-kinase inhibitor, but was abolished upon inhibition of ERK, indicating that insulin suppresses GABA(A)Rs through a mechanism that involves ERK activation. Radioimmunoassay revealed that the secretion of C-peptide was enhanced by GABA, which was blocked by pre-incubating the cells with picrotoxin (50 μM, p<0.01) and insulin (1 μM, p<0.01), respectively. Together, these data suggest that autocrine GABA, via activation of GABA(A)Rs, depolarizes the pancreatic β-cells and enhances insulin secretion. On the other hand, insulin down-regulates GABA-GABA(A)R signaling presenting a feedback mechanism for fine-tuning β-cell secretion.  相似文献   
88.
The oxidative stress imposed by nutritional variations in selenium (Se) has plausible role in reproductive toxicology and affects the reproductive potential. Also, the expression of heat shock proteins (HSPs) is a highly regulated event throughout the process of spermatogenesis and is modulated by stressful stimuli. This prompted us to investigate the possibility that Se‐induced oxidative stress may affect the fertility status by altering the expressions of the constitutive and inducible HSP70 proteins, having crucial role in spermatogenesis. Different Se status‐deficient, adequate, and excess, male Balb/c mice were created by feeding yeast‐based Se‐deficient diet (group I) and deficient diet supplemented with Se as sodium selenite at 0.2 and 1 ppm Se (group II and III) for a period of 8 weeks. After completion of the diet‐feeding schedule, a significant decrease in the Se and glutathione peroxidase (GSH‐Px) levels was observed in the Se‐deficient group (I), whereas Se‐excess group (III) demonstrated an increase. Increased levels of reactive oxygen species, malondialdehyde, and alterations in the redox status in both groups I and III indicated oxidative‐stressed conditions. There was an overall reduced fertility status in mice supplemented with Se‐deficient and Se‐excess diet. The mRNA and protein expression of HSP70 was found to be elevated in these two groups, whereas the expression patterns of HSP70‐2 and MSJ‐1 demonstrated a reverse trend. In vitro CDC2 kinase assay showed reduced kinase activity in group I and group III. These findings suggest that Se‐induced oxidative stress by differentially regulating various HSP70s can affect its downstream factors having crucially important role in differentiation of germ cells and completion of spermatogenesis. Therefore, it can provide an insight into the mechanism(s) by which the oxidative stress–induced reproductive toxicity can lead to increased apoptosis/growth arrest and infertility. This will thus add new dimensions to the molecular mechanism underlying the human male infertility and open new vistas in the development of various chemo‐preventive methods. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:125–136, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20276  相似文献   
89.
90.
Deciphering sequence information from sugar-phosphate backbone is finely tuned through the conformational substates of DNA. BII conformation, one of the conformational substates of B-DNA, is known to play a key role in DNA-protein recognition. BI and BII are identified by the epsilon-zeta difference, which is negative in BI and positive in BII. Our analysis of MD and crystal structures shows that BII conformation is sequence specific and dinucleotides GC, CG, CA, TG, TA show high preference to take up BII conformation, while TT, TC, CT, CC dinucleotides rarely take up this conformation. Significant changes were observed in the dinucleotide parameters viz. twist, roll, and slide for the steps having BII conformation. Interestingly, the magnitude of variation in the dinucleotide parameters is seen to depend mainly on two factors, the magnitude of epsilon-zeta difference and the presence or absence of BII conformation in the second strand, across the WC base-paired dinucleotide step. Based on these two factors, the conformational substate of a dinucleotide step can be further classified as BI.BI (BI conformation in both strands), BI.BII (BI conformation in one strand and BII conformation in the other), and BII.BII (BII conformation in both strands). The occurrence of BII in both strands was found to be quite rare and thus, it can be concluded that BI.BI and BI.BII hybrid steps are more favorable than a BII.BII step. In conformity with the sequence preference seen for dinucleotides in each strand, BII.BII combination of backbone conformation was observed only for GC, CG, CA, and TG containing dinucleotide steps. We further classified BII.BII step as strong BII and weak BII depending on the magnitude of the average epsilon-zeta difference. The dinucleotide steps which belong to the category of strong BII, have large twist, high positive slide and negative roll values, while those in the weak BII group have roll, twist, and slide values similar to that of hybrid BI.BII steps. This conformational property could be contributing to the groove opening/closing and thus can modulate protein-DNA interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号