首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   10篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   7篇
  2010年   6篇
  2009年   1篇
  2008年   7篇
  2007年   3篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   5篇
  1999年   10篇
  1998年   3篇
  1996年   3篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
  1965年   1篇
排序方式: 共有126条查询结果,搜索用时 78 毫秒
11.
The retinal protein phoborhodopsin (pR) (also called sensory rhodopsin II) is a specialized photoreceptor pigment used for negative phototaxis in halobacteria. Upon absorption of light, the pigment is transformed into a short-wavelength intermediate, M, that most likely is the signaling state (or its precursor) that triggers the motility response of the cell. The M intermediate thermally decays into the initial pigment, completing the cycle of transformations. In this study we attempted to determine whether M can be converted into the initial state by light. The M intermediate was trapped by the illumination of a water glycerol suspension of phoborhodopsin from Natronobacterium pharaonis called pharaonis phoborhodopsin (ppR) with yellow light (>450 nm) at -50 degrees C. The M intermediate absorbing at 390 nm is stable in the dark at this temperature. We found, however, that M is converted into the initial (or spectrally similar) state with an absorption maximum at 501 nm upon illumination with 380-nm light at -60 degrees C. The reversible transformations ppR if M are accompanied by the perturbation of tryptophan(s) and probably tyrosine(s) residues, as reflected by changes in the UV absorption band. Illumination at lower temperature (-160 degrees C) reveals two intermediates in the photoconversion of M, which we termed M' (or M'(404)) and ppR' (or ppR'(496)). A third photoproduct, ppR'(504), is formed at -110 degrees C during thermal transformations of M'(404) and ppR'(496). The absorption spectrum of M'(404) (maximum at 404 nm) consists of distinct vibronic bands at 362, 382, 404, and 420 nm that are different from the vibronic bands of M at 348, 368, 390, and 415 nm. ppR'(496) has an absorption band that is shifted to shorter wavelengths by 5 nm compared to the initial ppR, whereas ppR'(504) is redshifted by at least 3 nm. As in bacteriorhodopsin, photoexcitation of the M intermediate of ppR and, presumably, photoisomerization of the chromophore during the M --> M' transition result in a dramatic increase in the proton affinity of the Schiff base, followed by its reprotonation during the M' --> ppR' transition. Because the latter reaction occurs at very low temperature, the proton is most likely taken from the counterion (Asp(75)) rather than from the bulk. The phototransformation of M reveals a certain heterogeneity of the pigment, which probably reflects different populations of M or its photoproduct M'. Photoconversion of the M intermediate provides a possible pathway for photoreception in halobacteria and a useful tool for studying the mechanisms of signal transduction by phoborhodopsin (sensory rhodopsin II).  相似文献   
12.
The method of estimation of the biological age in non-feeding tick females by the level of adipose inclusions in the cells of the midgut and fat body is developed. In order to estimate the fat reserves in non-feeding females, alive ticks were dissected and fragments of their internal were vitally stained with the pregnant solution of sudan III in 70 % ethanol. Three age-specific groups were established: I, young females whose intestines and fat body were filled with fat inclusions; II, mature females whose fat reserves were partially expended; III, old females having isolated fat inclusions in their midgut and fat body.  相似文献   
13.
Parameters of degradation of p-toluenesulfonate (TS) by free and agar-embedded Comamonas testosteroni BS1310 (pBS1010) cells were determined. The maximum rate of TS degradation was 25% lower in immobilized than free cells, equaling 11 nmol min?1 mg?1 cells. Degradation of TS by both free and immobilized cells was associated with molecular oxygen consumption (molar ratio 1 : 2). In a plug-flow reactor, the degradation rate was 10.4 nmol min?1 mg?1 cells. The results can be applied to designing reactors for TS degradation in sewage and developing biosensors.  相似文献   
14.
Similarly to bacteriorhodopsin, proteorhodopsin that normally contains all-trans and 13-cis retinal is transformed at low pH to a species containing 9-cis retinal under continuous illumination at lambda > 530 nm. This species, absorbing around 430 nm, returns thermally in tens of minutes to initial pigment and can be reconverted also with blue-light illumination. The yield of the 9-cis species is negligibly small at neutral pH but increases manyfold (>100) at acid pH with a pK(a) of 2.6. This indicates that protonation of acidic group(s) alters the photoreaction pathway that leads normally to all-trans --> 13-cis isomerization. In the D97N mutant, in which one of the two acidic groups in the vicinity of the retinal Schiff base is not ionizable, the yield of 9-cis species at low pH shows a pH dependence similar to that in the wild-type but with a somewhat increased pK(a) of 3.3. In contrast to this relatively minor effect, replacement of the other acidic group, Asp227, with Asn results in a remarkable, more than 50-fold, increase in the yield of the light-induced formation of 9-cis species in the pH range 4-6. It appears that protonation of Asp227 at low pH is what causes the dramatic increase in the yield of the 9-cis species in wild-type proteorhodopsin. We conclude that the photoisomerization pathways in proteorhodopsin to 13-cis or 9-cis photoproducts are controlled by the charge state of Asp227.  相似文献   
15.
Escherichia coli cells expressing the mutA allele of a glyV (glycine tRNA) gene express a strong mutator phenotype. The mutA allele differs from the wild type glyV gene by a base substitution in the anticodon such that the resulting tRNA misreads certain aspartate codons as glycine, resulting in random, low-level Asp-->Gly substitutions in proteins. Subsequent work showed that many types of mistranslation can lead to a very similar phenotype, named TSM for translational stress-induced mutagenesis. Here, we have determined the specificity of forward mutations occurring in the lacI gene in mutA cells as well as in wild type cells. Our results show that in comparison to wild type cells, base substitutions are elevated 23-fold in mutA cells, as against a eight-fold increase in insertions and a five-fold increase in deletions. Among base substitutions, transitions are elevated 13-fold, with both G:C-->A:T and A:T-->G:C mutations showing roughly similar increases. Transversions are elevated 35-fold, with G:C-->T:A, G:C-->C:G and A:T-->C:G elevated 28-, 13- and 27-fold, respectively. A:T-->T:A mutations increase a striking 348-fold over parental cells, with most occurring at two hotspot sequences that share the G:C-rich sequence 5'-CCGCGTGG. The increase in transversion mutations is similar to that observed in cells defective for dnaQ, the gene encoding the proofreading function of DNA polymerase III. In particular, the relative proportions and sites of occurrence of A:T-->T:A transversions are similar in mutA and mutD5 (an allele of dnaQ) cells. Interestingly, transversions are also the predominant base substitutions induced in dnaE173 cells in which a missense mutation in the alpha subunit of polymerase III abolishes proofreading without affecting the 3'-->5' exonuclease activity of the epsilon subunit.  相似文献   
16.
IL-23 is a heterodimeric cytokine comprising a p19 subunit associated with the IL-12/23p40 subunit. Like IL-12, IL-23 is expressed predominantly by activated dendritic cells (DCs) and phagocytic cells, and both cytokines induce IFN-gamma secretion by T cells. The induction of experimental autoimmune encephalitis, the animal model of multiple sclerosis (MS), occurs in mice lacking IL-12, but not in mice with targeted disruption of IL-23 or both IL-12 and IL-23. Thus, IL-23 expression in DCs may play an important role in the pathogenesis of human autoimmune diseases such as MS. We quantified the expression of IL-23 in monocyte-derived DCs in MS patients and healthy donors and found that DCs from MS patients secrete elevated amounts of IL-23 and express increased levels of IL-23p19 mRNA. Consistent with this abnormality, we found increased IL-17 production by T cells from MS patients. We then transfected monocyte-derived DCs from healthy donors with antisense oligonucleotides specific for the IL-23p19 and IL-12p35 genes and found potent suppression of gene expression and blockade of bioactive IL-23 and IL-12 production without affecting cellular viability or DCs maturation. Inhibition of IL-23 and IL-12 was associated with increased IL-10 and decreased TNF-alpha production. Furthermore, transfected DCs were poor allostimulators in the MLR. Our results demonstrate that an abnormal Th1 bias in DCs from MS patients related to IL-23 exists, and that antisense oligonucleotides specific to IL-23 can be used for immune modulation by targeting DC gene expression.  相似文献   
17.
The thermal norms of egg development were studied in the ground beetles Amara communis, A. nitida, Carabus granulatus, Platynus assimilis, Poecilus versicolor, Pterostichus oblongopunctatus (spring breeding species), P. melanarius, and P. niger (autumn breeding species). The adults were collected in soil traps near Arkhangelsk, St. Petersburg, Moscow, and Bryansk in May–June. Females and males were kept in pairs at 20°C and 22 h light per day. The eggs laid by females were kept at constant temperatures (12, 14, 16, 18, 20, and 22 ± 0.1°C). The development time for each egg was determined accurate to 0.5 day. From the values of the individual development rate (a reciprocal of development time) at all the temperatures, the thermal constants for development were calculated: the coefficient of linear regression (CLR) of the development rate on temperature, the sum of degree-days, and the thermal threshold for development (TTD). The egg development time was found to vary significantly between the species, except for A. communis, A. nitida, and C. granulatus. The values of CLR (i.e., the slopes of the regression lines) and TTD varied rather distinctly between the species and populations that revealed differences in the thermal requirements for egg development. In the spring breeding species the mean egg development time was significantly shorter, and the CLR and TTD values were on average higher than those of the autumn breeding species. Intraspecific latitudinal variation of the development time and the thermal requirements for egg development was revealed. The eggs laid by beetles from the Arkhangelsk population developed faster than those of the same species from the southern populations at all experimental temperatures. These differences were not great but statistically significant. At the same time, the differences between the CLR and TTD values for the northern and southern populations of the same species were non-significant in most cases. Thus, the main ecophysiological adaptation of carabid beetles during their northward expansion was the shortening of development time within the entire range of favorable temperatures, while the CLR and TTD values only insignificantly changed.  相似文献   
18.
Tyrosine-83, a residue which is conserved in all halobacterial retinal proteins, is located at the extracellular side in helix C of bacteriorhodopsin. Structural studies indicate that its hydroxyl group is hydrogen bonded to Trp189 and possibly to Glu194, a residue which is part of the proton release complex (PRC) in bacteriorhodopsin. To elucidate the role of Tyr83 in proton transport, we studied the Y83F and Y83N mutants. The Y83F mutation causes an 11 nm blue shift of the absorption spectrum and decreases the size of the absorption changes seen upon dark adaptation. The light-induced fast proton release, which accompanies formation of the M intermediate, is observed only at pH above 7 in Y83F. The pK(a) of the PRC in M is elevated in Y83F to about 7.3 (compared to 5.8 in WT). The rate of the recovery of the initial state (the rate of the O --> BR transition) and light-induced proton release at pH below 7 is very slow in Y83F (ca. 30 ms at pH 6). The amount of the O intermediate is decreased in Y83F despite the longer lifetime of O. The Y83N mutant shows a similar phenotype in respect to proton release. As in Y83F, the recovery of the initial state is slowed several fold in Y83N. The O intermediate is not seen in this mutant. The data indicate that the PRC is functional in Y83F and Y83N but its pK(a) in M is increased by about 1.5 pK units compared to the WT. This suggests that Tyr83 is not the main source for the proton released upon M formation in the WT; however, Tyr83 is involved in the proton release affecting the pK(a) of the PRC in M and the rate of proton transport from Asp85 to PRC during the O --> bR transition. Both the Y83F and the Y83N mutations lead to a greatly decreased functionality of the pigment at high pH because most of the pigment is converted into the inactive P480 species, with a pK(a) 8-9.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号