首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
排序方式: 共有50条查询结果,搜索用时 39 毫秒
11.
12.
Adriamycin, which is widely used in the treatment of various neoplastic conditions, exerts toxic effects in several organs. Adriamycin nephrotoxicity has been recently documented in a variety of animal species. The present study was designed to investigate the effect of lipoic acid on the nephrotoxic potential of adriamycin. The study was carried out with adult male albino rats of Wistar strain. Test animals were divided into four groups of six rats each as follows: Group I (control) received only normal saline throughout the course of the experiment. Group II (ADR) received intravenous injections of adriamycin through the tail vein (1 mg kg–1 body wt day–1) once a week for a period of 12 weeks. Group III (LA) received lipoic acid (35 mg kg–1 body wt day–1) intraperitoneally once a week for a period of 12 weeks. Group IV (ADR + LA) received a single injection of lipoic acid intraperitoneally 24 h prior to the administration of adriamycin through the tail vein once a week for a period of 12 weeks. Intravenous injections of adriamycin resulted in decreased activities of the glycolytic enzymes; hexokinase, phosphoglucoisomerase, aldolase and lactate dehydrogenase in the rat renal tissue. The gluconeogenic enzymes; glucose-6-phosphatase and fructose-1,6-diphosphatase, showed a decline in their activities on adriamycin administration. The transmembrane enzymes namely the Na+,K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and the brush-border enzyme alkaline phosphatase also showed a decrease in their activities. This decrease in the activities of ATPases and alkaline phosphatase suggests basolateral and brush-border membrane damage. Decreased activities of the TCA cycle enzymes isocitrate dehydrogenase, succinate dehydrogenase and malate dehydrogenase, suggest a loss in mitochondrial function and integrity. Nephrotoxicity was evident from the increased excretions of N-acetyl--D-glucosaminidase and -glutamyl transferase in the urine of adriamycin administered rats. These biochemical disturbances were effectively counteracted on pretreatment with lipoic acid, which brought about an increase in the activities of glycolytic enzymes, ATPases and the TCA cycle enzymes. On the other hand, the gluconeogenic enzymes showed a further decrease in their activities on lipoic acid pretreatment. LA pretreatment also restored the activities of the urinary enzymes to normal. These observations shed light on the nephroprotective action of lipoic acid rendered against experimental aminoglycoside toxicity.  相似文献   
13.
Adriamycin, which is widely used in the treatment of various neoplastic conditions, exerts toxic effects in many organs. The present study was designed to investigate the effect of lipoic acid upon adriamycin induced peroxidative damages in rat kidney. The increase in peroxidated lipids on adriamycin administration was accompanied by alterations in the antioxidant defense systems. The extent of nephrotoxicity induced by adriamycin was evident from the decreased activities of the enzymes -glutamyl transferase and -glucuronidase in the rat renal tissues. The study was carried out with adult male albino rats of Wistar strain, which comprised of one control and three experimental groups. Group I rats served as controls. GroupII rats received adriamycin (1 mg kg–1 body wt day–1) intravenously through the tail vein. Group III rats were given lipoic acid (35 mg kg–1 body wt day–1) intraperitoneally. Group IV rats were given lipoic acid 24 h before the administration of adriamycin. Rats subjected to adriamycin administration showed a decline in the thiol capacity of the cell accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione metabolizing enzymes (glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione-S-transferase). Lipoic acid pretreatment also restored the activities of -glutamyl transferase and -glucuronidase nearly to control levels thereby suggesting nephroprotection. The study has highlighted the beneficial effects of lipoic acid pretreatment in reversing the damages caused by adriamycin and thereby bringing about an improvement in the oxidative stress parameters.  相似文献   
14.
We compared the anatomical characteristics of vegetative organs, peduncle and mycorrhizal morphology of the two known species of Sirhookera (Epidendroideae, Orchidaceae) to identify anatomical markers for identification and the ecological adaptations of these species. The leaves are hypostomatic bearing tetracytic stomata and the walls of subsidiary cells are smooth in Sirhookera lanceolata and undulate in Sirhookera latifolia. On the adaxial and abaxial surfaces the leaves are covered by a thick cuticle. The hypodermis is dimorphic and present on both sides of the leaf; chlorenchyma is homogenous and the vascular bundles are collateral. The rhizome of Sirhookera possesses a single-layered epidermis, thick cuticle, thin-walled parenchymatous ground tissue containing starch grains and scattered collateral vascular bundles. A thick-walled sclerenchymatous band separates the cortex from the parenchymatous ground tissue comprising of banded cells in the peduncle. Starch grains are present in the ground tissue of the S. latifolia peduncle. The roots consist of the velamen, ∩-thickened exodermis, thin-walled cortex consisting of water-storage cells, O-thickened endodermis and a vascular cylinder with parenchymatous pith. Starch grains are present in the root cortical cells of S. lanceolata but absent in S. latifolia. Fungal pelotons that aids in nutrient acquisition were observed in the root cortical region of both species. The study revealed significant differences between the anatomical characteristics of the two species and that most of the anatomical features of Sirhookera relate to their ecological adaptations.  相似文献   
15.
Here, we demonstrate a mechanism of TGFbeta-mediated inhibition of PDGF-induced DNA synthesis in mesangial cells. TGFbeta significantly inhibited nuclear Akt phosphorylation without any effect on PDGF-stimulated phosphorylation of PDGFR at PI 3 kinase binding site (Tyr-751). Remarkably, TGFbeta inhibited cyclin D1 and cyclin E expression with concomitant decrease in CDK2 activity induced by PDGF. More importantly, we demonstrate that TGFbeta significantly abolished Akt-mediated serine-9 phosphorylation of glycogen synthase kinase 3beta (GSK3beta), thus prevented its inactivation. Expression of inactive GSK3betaK85R mutant increased cyclin D1 expression and DNA synthesis similar to PDGF. These results provide the first evidence that TGFbeta intercepts Akt kinase activity in the nucleus to block inactivation of GSK3beta, leading to attenuation of PDGF-induced CDK2 activity and DNA synthesis.  相似文献   
16.

The root (wilt) disease caused by phytoplasma (Ca. Phytoplasma) is one of the major and destructive occurs in coconut gardens of Southern India. As this organism could not be cultured in vitro, the early detection in the palm is very much challenging. Hence, proper early diagnosis and inoculum assessment relay mostly on the molecular techniques namely nested and quantitative PCR (qPCR). So, the present study qPCR assay conjugated with TaqMan® probe was developed which is a rapid, sensitive method to detect the phytoplasma. For the study, samples from different parts of infected coconut palms viz., spindle leaflets, roots and the insect vector—leaf hopper (Proutista moesta) were collected and assessed by targeting 16S rRNA gene. Further, nested PCR has been carried out using p1/p7 and fU5/rU3 primers and resulted in the amplification product size of 890 bp. From this amplified product, specifically a target of 69 bp from the 16S rRNA gene region has been detected through primers conjugated with Taqman probe in a step one instrument. The results indicated that the concentration of phytoplasma was more in spindle leaflets (8.9?×?105 g of tissue) followed by roots (7.4?×?105 g of tissue). Thus, a qPCR approach for detection and quantification of coconut phytoplasma was more advantageous than other PCR methods in terms of sensitivity and also reduced risk of cross contamination in the samples. Early diagnosis and quantification will pave way for the healthy coconut saplings selection and management under field conditions.

  相似文献   
17.
The diversity potential of arbuscular mycorrhizal fungi (AMF) in three different tropical soils of southern part of India was assessed by traditional morpho-typing of AMF-spores and by culture-independent nested-PCR of internal transcribed spacer region of ribosomal genes. The population diversity of AMF in soil was strongly correlated with available P2O5 in soil. Among the three different soils, black-cotton soil had more diversified AMF species than alluvial and red sandy soils. Pooled data of morpho-typing and sequence-driven analysis revealed that Glomus, Gigaspora, Scutellospora and Acaulospora are the AMF genera present in these soils. The diversity of AMF in soil differs with the mycorrhiza colonizing the plant roots.  相似文献   
18.
19.
Raptor-rictor axis in TGFbeta-induced protein synthesis   总被引:1,自引:0,他引:1  
Transforming growth factor-beta (TGFbeta) stimulates pathological renal cell hypertrophy for which increased protein synthesis is critical. The mechanism of TGFbeta-induced protein synthesis is not known, but PI 3 kinase-dependent Akt kinase activity is necessary. We investigated the contribution of downstream effectors of Akt in TGFbeta-stimulated protein synthesis. TGFbeta increased inactivating phosphorylation of Akt substrate tuberin in a PI 3 kinase/Akt dependent manner, resulting in activation of mTOR kinase. mTOR activity increased phosphorylation of S6 kinase and the translation repressor 4EBP-1, which were sensitive to inhibition of both PI 3 kinase and Akt. mTOR inhibitor rapamycin and a dominant negative mutant of mTOR suppressed TGFbeta-induced phosphorylation of S6 kinase and 4EBP-1. PI 3 kinase/Akt and mTOR regulated dissociation of 4EBP-1 from eIF4E to make the latter available for binding to eIF4G. mTOR and 4EBP-1 modulated TGFbeta-induced protein synthesis. mTOR is present in two multi protein complexes, mTORC1 and mTORC2. Raptor and rictor are part of mTORC1 and mTORC2, respectively. shRNA-mediated downregulation of raptor inhibited TGFbeta-stimulated mTOR kinase activity, resulting in inhibition of phosphorylation of S6 kinase and 4EBP-1. Raptor shRNA also prevented protein synthesis in response to TGFbeta. Downregulation of rictor inhibited serine 473 phosphorylation of Akt without any effect on phosphorylation of its substrate, tuberin. Furthermore, rictor shRNA increased phosphorylation of S6 kinase and 4EBP-1 in TGFbeta-independent manner, resulting in increased protein synthesis. Thus mTORC1 function is essential for TGFbeta-induced protein synthesis. Our data also provide novel evidence that rictor negatively regulates TORC1 activity to control basal protein synthesis, thus conferring tight control on cellular hypertrophy.  相似文献   
20.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), the agent of novel coronavirus 2019 (COVID‐19), has kept the globe in disquiets due to its severe life‐threatening conditions. The most common symptoms of COVID‐19 are fever, sore throat, and shortness of breath. According to the anecdotal reports from the health care workers, it has been suggested that the virus could reach the brain and can cause anosmia, hyposmia, hypogeusia, and hypopsia. Once the SARS‐CoV‐2 has entered the central nervous system (CNS), it can either exit in an inactive form in the tissues or may lead to neuroinflammation. Here, we aim to discuss the chronic infection of the olfactory bulb region of the brain by SARS‐CoV‐2 and how this could affect the nearby residing neurons in the host. We further review the probable cellular mechanism and activation of the microglia 1 phenotype possibly leading to various neurodegenerative disorders. In conclusion, SARS‐CoV‐2 might probably infect the olfactory bulb neuron enervating the nasal epithelium accessing the CNS and might cause neurodegenerative diseases in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号